Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of hematology 45 (1982), S. 249-259 
    ISSN: 1432-0584
    Keywords: Complement, C3b ; Hemoglobinuria, paroxysmal ; Anemia, hemolytic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The efficiency of cytolysis by the terminal complement proteins C5b-9 can be markedly enhanced by C3b molecules bound on the target cell membrane (Hammer et al. 1976). This enhancement was shown to be proportional to the number of C3b molecules on the cell membrane. The present experiments have shown that the hemolytic efficiency of the complement membrane attack system is two to five times greater on paroxysmal nocturnal hemoglobulinuria erythrocytes (PNHE) than on normal human E. This difference is attribut to a derivative of C3, probably C3b, on PNHE since it was abolished by anti-C3 but not by anti-C2. The efficiency of C5b-9 to lyse PNHE was only partially decreased by C3b inactivator and β 1H, indicating that the C3b on PNHE is not readily inactivated by its regulatory proteins. Furthermore, cells from a single severely affected patient consumed 3-fold more C5b6 than normal human E yet concommitantly measured membrane fluidity was normal. From these observations we conclude that cell-bound C3b on PNHE serves two functions: (a) it increases the hemolytic efficiency of membrane attack components of the complement system; and (b) it provides sites for assembly of the alternative pathway convertases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Advanced Materials for Optics and Electronics 5 (1995), S. 101-108 
    ISSN: 1057-9257
    Keywords: CdZnTe ; Zn segregation ; Bridgman ; ACRT ; substrates ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Notes: One of the remaining problems in the use of CdZnTe material as substrates in liquid phase epitaxy (LPE) of CdxHg1-xTe (CMT) layers is that of variation in lattice matching, i.e. Zn content, across substrates. This wil become increasingly important in the future as larger focal plane arrays of infrared detectors are required. The basic Bridgman growth process for CdTe/Cd0.96Zn0.04Te has been extended by applying the accelerated crucible rotation technique (ACRT). A marked reduction in axial Zn segregtion is seen in 50 mm diameter ACRT material, but this effect is smaller in the case of 75 mm diameter crystals. Radial variations in Zn content are small in both sizes of crystal, demonstrating the benefits obtained from ACRT stirring. Both macro- and microsegregation effects have been studied in these crystals in an attempt to understand the growth mechanism. Zinc distributions have been assessed by near-infrared transmission, X-ray lattice parameter measurements, atomic absorption spectrometry (AAS) and Auger electron spectrometry (AES). The last technique was used for the microsegregation studies, while AAS provides the absolute calibration for Zn content. Comparisons with segregation behaviour found in the literature will be given. It will be shown that the low temperature gradient and low growth rate lead to a degree of supercooling in the first-to-freeze region and this leads to significant Zn segregation in both radial and axial directions. As the crystals reach full diameter, the radial variation is decreased, presumably by the action of the ACRT, and axial segregation is also reduced.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...