Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 44 (1981), S. 19-26 
    ISSN: 1432-1106
    Keywords: Adaptation ; Vestibulo-ocular reflex ; Torsional eye movements ; Prism reversal ; Visual vestibular interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Reversing vision in the horizontal (left-right) plane in humans induces adaptive mechanisms and even reversal of the horizontal vestibulo-ocular reflex (HVOR). The present experiments were aimed at investigating if such adaptive modifications could be observed in the frontal plane by reversal of the torsional visual world movements. Torsional vestibulo-ocular reflex (TVOR) was measured in one subject who wore Dove prisms for 19 days. The gain of TVOR was tested in the dark with the head leaned backward and rotating around an earth vertical axis with sinusoidal rotation (1/6 Hz). The gain decreased from 0.27 to 0.13 at 70 ° peak-to-peak amplitude, and from 0.3 to 0.11 at 45 ° peak-to-peak amplitude after 19 days of prism-wearing. Full gain recovery was observed 10 days after prism removal. The results are compared with the observation that in the same situation the vertical VOR (up-down) is not reversed (Dove prisms do not reverse visual images in this plane). As the same four (vertical) canals produce both reflexes, it is suggested that central neuronal mechanisms allow the recognition of the geometrical pattern of visual reversals and selectively adapt the reflex in the relevant planes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 45 (1982), S. 45-58 
    ISSN: 1432-1106
    Keywords: Oculomotor ; Vestibular ; Adaptation ; Vision reversal ; Plasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This study examines long-term (up to 27 days) effects of maintained vision reversal on (i) smooth visual tracking with head still, (ii) oculomotor response to actively generated head oscillation and (iii) ‘spontaneous’ saccades. Dove prism goggles produced horizontal, but not vertical (sagittal plane), vision reversal. Eye movements were recorded by EOG; head movements by an electro-magnetic search coil. Both visual tracking and saccade dynamics remained unchanged throughout. In contrast, both the ocular response to active head osculations (goggles off and subject looking at a stationary target) and associated retinal image blur showed substantial and retained adaptive changes, akin to those previously found in the vestibulo-ocular reflex as tested in darkness at 0.17 Hz. However, several additional unexpected results emerged. First, in the fully adapted state smooth eye movements tended to be of reversed phase in the range 0.5–1.0 Hz (in spite of normal vision during tests), but of normal phase from about 2 Hz and above (in spite of negligible visual tracking in this upper range). Second, after permanent removal of the inverting goggles, this peculiar frequency response of the fully adapted state quickly (36 h) reverted to a dynamically simpler condition manifest as retained (2–3 weeks) attenuation of gain (eye vel./ head vel.) which, as in control conditions, was monotonically related to frequency. From these two findings it is inferred that the fully adapted state may have comprised two separate components: (i) A ‘simple’ element of monotonic and long-lasting gain attenuation and (ii) a ‘complex’, frequency labile, element which could be quickly rejected. Dynamic characteristics of the putative ‘complex’ element were estimated by vectorial subtraction of the ‘simple’ one from that of the fully adapted condition. The outcome suggests that the inferred ‘complex’ condition might represent a predictive element. Two further findings are reported: (i) Substantially different vectors of the adapted response were obtained with normal and reversed vision at 3.0 Hz head oscillation, indicating a novel visual influence acting above the cut-off frequency for visual tracking. (ii) During head oscillation in the vertical sagittal plane (in which vision was not reversed) there was never any image blur, indicating high geometric specificity in the adaptive process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 56 (1984), S. 149-153 
    ISSN: 1432-1106
    Keywords: Vestibulo-ocular reflex ; Plasticity ; Adaptation ; Visual-vestibular interaction ; Pursuit ; Mental training
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The vestibulo-ocular reflex (VOR) can be suppressed in darkness if a subject tries to imagine that he looks at a head fixed target. This mental suppression of VOR was used to induce adaptive changes in VOR gam during 3 h of active head oscillations in complete darkness. VOR gain changes were tested by asking the subject to look at a visual target; then passively or actively the head was turned in darkness while the subject “fixated” the same target. Corrective saccades occurring at the end of the movement when lights were turned on give an elegant measure of VOR gain. Three hours of training induced in 3 subjects a mean of 10.9% and 11.4% decrease of VOR gain for passive and active conditions, respectively. This demonstrates that reflex adaptation can be obtained without external cues, and probably with only an internal reconstruction of target and eye movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 84 (1991), S. 47-56 
    ISSN: 1432-1106
    Keywords: Saccades ; Vestibulo ocular reflex ; Adaptation ; Vestibular perception ; Eye movements ; Psychomotor performance ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Results from Bloomberg et al. (1991) led to the hypothesis that saccades which accompany the darktested vestibulo-ocular reflex (VOR) tend to move the eyes towards a vestibularly derived percept of an intended oculomotor goal: also that this is so even when that percept has been adaptively modified by suitably prolonged visual-vestibular conflict. The present experiments investigate these implications by comparing the combined VOR+saccade performance with a presumed “motor readout” of the normal and adaptively modified vestibular percept. The methods employed were similar to those of an earlier study Bloomberg et al. (1988) in which it was found that after cessation of a. brief passive whole body rotation in the dark, a previously seen earth-fixed target can be accurately located by saccadic eye movements based on a vestibular memory of the preceding head rotation; the so-called “Vestibular Memory-Contingent Saccade” (VMCS) paradigm. The result showed that the vestibular perceptual response, as measured after rotation by means of the VMCS paradigm was on average indistinguishable from the combined VOR + saccade response measured during rotation. Furthermore, this was so in both the normal and adapted states. We conclude that these findings substantiate the above hypothesis. The results incidentally reaffirm the adaptive modifiability of vestibular perception, emphasing the need for active maintenance of its proper calibration according to behavioural context.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 84 (1991), S. 35-46 
    ISSN: 1432-1106
    Keywords: Vestibulo ; ocular reflex ; Saccades ; Adaptation ; Vestibular perception ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary When a normal human subject is briefly turned in total darkness while trying to “look” at a spatially fixed target, the vestibulo-ocular reflex (VOR) produces slow-phase compensatory eye movements tending to hold the eyes on target. However, slow-phase compensation per se is generally inadequate in these circumstances. Nevertheless it has recently been found, that even in the dark, this inadequacy tends to be corrected by supplementary saccades usually acting in the compensatory direction. The present study further investigates this phenomenon by measuring the respective contributions of saccadic, slow-phase and overall net compensation in 9 subjects tested before and after 30% adaptive attenuation of VOR slow-phase gain. In each test series, subjects attempted to stabilize their gaze on a previously seen target during each of 40 brief (≈0.5 s) whole body rotations (40°/s, 20° amp) conducted in complete darkness. The adaptive experience comprised 2 h of full-field visual suppression of the VOR during sinusoidal rotation of subject and surround at 1/6 Hz and 40°/s velocity amplitude. Before adaptation, the cumulative slow-phase and cumulative saccadic components produced on average 78% and 14% respectively of the ideal (100%) compensation, thus yielding an overall net compensation which was 92% of the desired value. After adaptation, the corresponding values in the same population were 53%, 18% and 71% respectively. Thus after adaptation, the combined saccadic-slow-phase response brought the final gaze position to a point in space that was systematically shifted in the direction of head rotation (i.e. undercompensation). Subjects re-exposed to 30 min of normal visual-vestibular interaction displayed a variety of recovery patterns using different combinations of slow and saccadic eye movements. However, there was a consistent “synergistic” tendency for saccadic eye movements to improve slow-phase performance, regardless of the subject's adaptive state. In one subject, compensatory saccadic eye movements corrected a consistent directional asymmetry in the slow-phase response. It is suggested that a conscious vestibular percept of self-rotation might underlie the combined saccadic-slow-phase response, and that the net under performance after adaptation might reflect attenuation of this percept relative to the actual rotational stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...