Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1912
    Keywords: Adenosine ; Phenylisopropyladenosine ; Adenosine receptors ; Negative inotropic effect ; G proteins ; Ferret ventricular myocardium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An adenosine A1 receptor agonist R-N6-phenylisopropyladenosine (R-PIA) elicited a pronounced negative inotropic effect with the EC50 value of 0.69 μmol/1 in the presence of a β-adrenoceptor blocking agent bupranolol (0.3 μmol/1) in the isolated ferret papillary muscle. The negative inotropic effect of R-PIA was not associated with changes in cyclic AMP level. Adenosine and other A1 receptor agonists also elicited a negative inotropic effect. DPCPX (1,3-dipropyl-8-cyclopentyl xanthine) antagonized the negative inotropic effect of R-PIA in a competitive manner (pA2 value = 8.4). The inhibitory action of R-PIA was markedly attenuated in the ventricular muscle preparation isolated from ferrets pretreated with pertussis toxin that caused ADP-ribosylation of 39 kDa proteins in the membrane fraction. In the membrane fraction derived from the ferret ventricle, [3H]-DPCPX bound to a single binding site in a saturable and reversible manner with high affinity (Kd value = 1.21±0.41 nmol/l; B max = 12.8±3.02 fmol/mg protein; n = 7). The binding characteristics of [3H]-DPCPX in the rat ventricle (Kd value = 1.51 ±0.09 nmol/l; B max = 12.7±1.47 fmol/mg protein; n = 5) were similar to those in the ferret. On the other hand, the content of Go, a major pertussis toxin-sensitive G protein in the ferret heart, was much higher in the ferret than in the rat ventricle. The present results indicate that adenosine receptors may play an important role in the inhibitory regulation of ventricular contractility in the ferret in contrast to other mammalian species. The signal transduction process subsequent to agonist binding to A1 receptors including the pertussis toxin-sensitive G protein and ion channels may be responsible for the unique inhibitory action of adenosine in this species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 31 (1993), S. 557-565 
    ISSN: 0887-6266
    Keywords: poly(ethylene terephthalate), microhardness study of transitions and crystallization in ; microhardness study of transitions and crystallization in PET ; crystallization of PET, microhardness study of ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The crystallization behavior of poly(ethylene terephthalate) both with and without sodium montanate, a crystal nucleating agent, has been studied using the microhardness technique. The kinetics of crystallization from the glassy state were investigated in real time by measuring the microhardness H at different crystallization temperatures. Results are discussed in terms of the Avrami equation. Values of the Avrami exponent n of about 3 are observed for samples irrespective of nucleating agent. For samples with nucleant two crystallization ranges are observed: a first range which corresponds to a fast crystallization from nucleating agent particles and a second range which is associated with a slow self-crystallization mode. New transitions evidenced by the presence of a small maximum in H as a function of annealing time and temperature are detected at temperatures above Tg for physically aged samples. The kinetics of this transition have also been examined. It is further shown that the presence of nucleating agent induces a hardening at room temperature which is similar to the effect produced by the physical aging of the samples below Tg. Finally, it is found that aging reduces the rate of creep of the material under the indenter. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 29 (1991), S. 819-824 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The microhardness (H) of poly(ethylene terephthalate) (PET) containing catalysts, as well as of PET without catalysts has been investigated. Two types of morphologies have been examined: (a) structures where spherulitic growth is incomplete, resulting from a primary crystallization from the glassy state and (b) samples in which spherulitic crystallization is completed. It is shown that for the former materials, H is an increasing linear function of the volume of the spherulites and depends on annealing time and catalyst content. For the latter materials, H is nearly constant with increasing annealing temperature (TA). Results are discussed in the light of three principal structural factors which determine the microhardness behavior: (1) the volume content of spherulites within the material; (2) the value of crystallinity within the stacks of the lamella, which turns out to be a constant; (3) the average thickness of the crystals, which increases slightly with TA after crystallization is completed. An expression which takes into account the above parameters and offers a description of the H of polyethylene terephthalate is proposed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...