Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-136X
    Keywords: Adenylate deaminase ; Creatine kinase and adenylate kinases ; Heart ; Skeletal muscle ; Toad, Bufo americanus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The specific activity of three characteristic enzymes, adenylate deaminase, adenylate kinase, and creatine kinase, in the skeletal muscles and heart of a variety of vertebrate land animals, including the human, are surveyed. Data from this study and available studies in the literature suggest that adenosine monophosphate deaminase in land vertebrates is quite high in white skeletal muscle, usually somewhat lower in red muscle, and 15-to 500-fold lower in cardiac muscle. Adenosine monophosphate deaminase is active primarily under ischemic or hypoxic conditions which occur frequently in white muscle, only occasionally in red muscle, and ought never occur in heart muscle, and this may therefore account for observed enzyme levels. The common North American toad, Bufo americanus, provides a striking exception to the rule with cardiac adenosine monophosphate deaminase as high as in mammalian skeletal muscle, whereas its skeletal muscle level of adenosine monophosphate deaminase is several times lower. The exceptional levels in the toad are not due to a change in substrate binding and are not accompanied by comparable change in the level of adenylate or creatine kinase. Nor do they signal any major change in isozyme composition, since a human muscle adenosine monophosphate deaminase-specific antiserum reacts with toad muscle adenosine monophosphate deaminase, but not with toad heart adenosine monophosphate deaminase. They do not represent any general anuran evolutionary strategy, since the bullfrog (Rana catesbeiana) and the giant tropic toad (Bufo marinus) have the usual vertebrate pattern of adenosine monophosphate deaminase distribution. Lower skeletal muscle activities in anurans may simply represent the contribution of tonic muscle fiber bundles containing low levels of adenosine monophosphate deaminase, but the explanation for the extremely high adenosine monophosphate deaminase levels in heart ventricular muscle is not apparent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...