Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • African grasses  (1)
  • Calcium sparks Calcium transients Cardiac pacemaker cells Intracellular calcium Nuclear calcium Spontaneous action potentials  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 441 (2000), S. 219-227 
    ISSN: 1432-2013
    Keywords: Calcium sparks Calcium transients Cardiac pacemaker cells Intracellular calcium Nuclear calcium Spontaneous action potentials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Isolated, spontaneously active pacemaker cells from the sinus venosus region of the toad heart were loaded with the calcium indicator fluo-3. The cells were examined with a confocal microscope to investigate the distribution of calcium during spontaneous activity. Three classes of calcium-related signals were present. First, intense, localised, time-invariant signals were detected from structures distributed across the cell interior. Based on the insensitivity to saponin and the distribution in the cell, these signals appear to arise from fluo-3 located in the sarcoplasmic reticulum and the nuclear envelope. Second, spatially uniform signals from the cytoplasm were present at rest and showed spontaneous increases in [Ca2+]i which propagated along the cell. These Ca2+ transients were uniform in intensity across the diameter of the cell and we could detect no significant delay in the middle of the cell compared to the edges. However, within the nucleus the Ca2+ transient showed a clear delay compared to the cytoplasm. Third, localised, transient increases in [Ca2+]i (Ca2+ sparks) which did not propagate were also detectable. These could be detected both near the surface membrane and in the interior of the cell and reduced in magnitude and increased in duration in the presence of ryanodine. The frequency of firing of Ca2+ sparks significantly increased in the 200-ms period preceding a spontaneous Ca2+ transient. These results suggest that pacemaker cells contain sarcoplasmic reticulum which is distributed across the cell. The Ca2+ transient is uniform across the cell indicating that near-synchronous release of Ca2+ from the sarcoplasmic reticulum is achieved. Ca2+ sparks occur in pacemaker cells though their role in pacemaker function remains to be elucidated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological invasions 2 (2000), S. 123-140 
    ISSN: 1573-1464
    Keywords: African grasses ; ecophysiology ; ecosystem effects ; global change ; invasions ; pasture conversion ; tropical America
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clearing of natural vegetation for pastures and the deliberate introduction of African grasses constitute significant threats to the biological diversity of the tropics, subtropics, and warm temperate regions of the Americas. African grasses have escaped from cultivated pastures and revegetated rangeland sites and invaded natural areas at alarming rates. Invaded ecosystems tend to be biotically impoverished and differ markedly from adjacent non-invaded areas in structure and function. Effects of pasture creation and invasion by African grasses on ecosystem processes (transformation and flux of energy and matter) are primarily related to loss of woody species and changes in the fire regime. However, the ecophysiological attributes of the African grasses (e.g. high biomass allocation to leaves, high growth rate, and high leaf-level gas exchange rates) also have important consequences. Here we describe the extent of pasture creation with African grasses and their invasive spread in the New World and review ecological effects of these land-cover changes. We highlight a number of comparative ecophysiological studies within the context of mechanisms responsible for invasion by African grasses and resulting ecosystem change.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...