Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 78 (1989), S. 16-21 
    ISSN: 1432-0533
    Keywords: Plasma protein ; Brain ; Blood-brain barrier ; Neuron ; Aging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The regional distribution of plasma protein immunoreactivity was studied in the postmortem central nervous system (CNS) of normal subjects 18 to 78 years old. Samples taken from various areas of brain and spinal cord were processed for peroxidase-antiperoxidase immunocytochemistry using polyclonal antibodies against plasma albumin, prealbumin, α1-acid glycoprotein, α1-macroglobulin, IgG, transferrin, haptoglobin, hemopexin, fibrinogen, as well against the glial fibrillary acidic and S-100 proteins. Many neurons of the spinal cord, cranial nerve nuclei, pontine nuclei, cerebellar dentate nucleus, red nucleus, thalamus and hypothalamus showed strong immunostaining for albumin and moderate to strong staining for α1-acid, IgG, transferrin, haptoglobin, as well as relatively weak immunoreactivity against other plasma proteins. Less intense staining was seen in the nucleus basalis, putamen and Purkinje cells. In contrast, most cerebral cortical neurons were negative except for a few positively stained pyramidal neurons in the hippocampus and in layers III and V of the association neocortex, although more positive pyramidal neurons were observed in the motor and sensory neocortices. Reaction products were also seen in axons of motor and sensory long tracts. These findings suggest that plasma proteins may be transported to spinal cord and brain stem neurons by peripherally projecting nerves and that a series of anterograde and retrograde transneuronal transfers are responsible for the accumulation of plasma proteins in relay nuclei and in other CNS neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Immunohistochemistry ; Paraganglia ; Aging ; Catecholamines ; Catecholamine-synthesizing enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The catecholamine-synthesizing enzymes, tyrosine hydroxylase, dopamine-β-hydroxylase and phenylethanolamine-N-methyltransferase were examined by immunohistochemistry in hypertrophied paraganglia of aged male Fischer-344 rats. All paraganglionic cells reacted with antibodies against tyrosine hydroxylase. Dopamine β-hydroxylase was identified in most paraganglionic cells, indicating that they synthesized norepinephrine. A variable number of paraganglia were positive for phenylethanolamine-N-methyltransferase, which suggested that they synthesized epinephrine. The formaldehyde-induced fluorescence method demonstrated greenish-yellow fluorescence or yellowish-brown fluorescence. The intensity of the fluorescence was in the same range as in adrenal medullary cells. The observations indicate that paraganglia are capable of synthesizing epinephrine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Chromaffin cells ; Paraganglia ; Aging ; Glucocorticoids ; Adrenal medulla ; Rat (F344)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The increase in numbers of extra-adrenal chromaffin cells of abdominal paraganglia in senescent F344 rats was investigated by 5-bromo-2′-deoxyuridine immunocytochemistry. A monoclonal antibody raised against 5-bromo-2′-deoxyuridine was used to react with tissue-sections of paraganglia taken from 28-month-old animals given weekly injections of the thymidine analog over a 14-week period. No immunoreactivity was detected in the extra-adrenal chromaffin cells, whereas control sections of intestinal epithelium showed abundant immunoreactivity. Also, the profile for immunoreactivity of the glucocorticoid receptor in relation to age was compared between extra-adrenal and adrenal chromaffin cells, which share cytological characteristics, but not the increase associated with senescence. In the extra-adrenal chromaffin cells, the intensity of receptor immunostaining was unchanged, while in the adrenal chromaffin cells it decreased with age. These results indicate that hypertrophy of the paraganglia in aged F344 rats is not due to the proliferation of extra-adrenal chromaffin cells. Instead, they suggest that the chromaffin cell phenotype may be induced in pre-existing cells and that the expression of the glucocorticoid receptor has an intrinsic role in this change.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...