Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Agrobacterium tumefaciens ; Transgenic plants ; T-DNA structure ; Between-transformant variability ; Chimeric genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have previously described substantial variation in the level of expression of two linked genes which were introduced into transgenic petunia plants using Agrobacterium tumefaciens. These genes were (i) nopaline synthase (nos) and (ii) a chimeric chlorophyll a/b binding protein/octopine synthase (cab/ocs) gene. In this report we analyze the relationship between the level of expression of the introduced genes and T-DNA structure and copy number in 40 transgenic petunia plants derived from 26 transformed calli. Multiple shoots were regenerated from 8 of these calli and in only 6 cases were multiple regenerated shoots from each callus genotypically identical to each other. Many genotypes showed no nos gene expression (22/28). Most of the plants (16/22) which lacked nos gene expression did contain nos-encoding DNA with the expected restriction enzyme map. Similarly, amongst the genotypes showing no cab/ocs gene expression, the majority (11/28) did not show any alterations in restriction fragments corresponding to the expected cab/ocs coding sequences (10/11). Approximately half of the plants carried multiple copies of T-DNA in inverted repeats about the left or right T-DNA boundaries. No positive correlation was observed between the copy number of the introduced DNA and the level of expression of the introduced genes. However, plants with high copy number complex insertions composed of multiple inverted repeats in linear arrays usually showed low levels of expression of the introduced genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Agrobacterium tumefaciens ; Lycopersicon esculentum ; Inverted repeats ; T-DNA junctions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The detailed structural organization of DNA sequences transferred to the plant genome via Agrobacterium tumefaciens has been determined in 11 transgenic tomato plants that carry the transferred DNA (T-DNA) at a single genetic locus. The majority (seven) of these plants were found to carry multiple copies of T-DNA arranged in inverted repeat structures. Such a high frequency of inverted repeats among transgenotes has not been previously reported and appears to be characteristic of transformation events caused by C58/pGV3850 strains of Agrobacterium. The inverted repeats were found to be centered on either the left or the right T-DNA boundary and both types were observed at similar frequency. In several plants both types of inverted repeat were found to coexist in the same linear array of elements. Direct repeats were observed in two plants, each time at the end of an array of inverted repeat elements, and at a lower frequency than inverted repeats. The junctions between T-DNA elements and plant DNA sequences and the junctions between adjacent T-DNA elements were mapped in the same 11 plants, allowing the determination of the distribution of junction points at each end for both types of junction. Based on a total of 17 distinct junctions at the right end of T-DNA and 19 at the left end, the distribution of junction points was found to be much more homogeneous at the right end than at the left end. Left end junctions were found to be distributed over a 3 kb region of T-DNA with two thirds of the junctions within 217 bp of the left repeat. Two thirds of the right end junctions were found to lie within 11 bp of the right repeat with the rest more than 39 bp from the right repeat. T-DNA::plant DNA junctions and T-DNA::T-DNA inverted repeat junctions showed similar distributions of junction points at both right and left ends. The possibilities that T-DNA inverted repeats are unstable in plants and refractory to cloning in wild type Escherichia coli is discussed. Two distinct types of mechanisms for inverted repeat formation are contrasted, replication and ligation mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Agrobacterium tumefaciens ; Genetic stability ; Linkage analysis ; Molecular markers ; Tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The genomic distribution and genetic behavior of DNA sequences introduced into the tomato genome by Agrobacterium tumefaciens were investigated in the backcross progeny of 10 transformed Lycopersicon esculentum x L. pennellii hybrids. All transformants were found to represent single locus insertions based on the co-segregation of restriction fragments corresponding to the T-DNA left and right border sequences in the backcross progeny. Isozyme and restriction fragment length polymorphism (RFLP) markers were used to test linkage relationships of the insertion in each backcross family. The T-DNA inserts in 9 of the 10 transformants were mapped in relation to one or more of these markers, and each mapped to a different chromosomal location. Because only one insertion did not show linkage with the markers employed, it must be located somewhere other than the genomic regions covered by the markers assayed. We conclude that Agrobacterium-mediated insertion in the Lycopersicon genome appears to be random at the chromosomal level. No discrepancies were found between the T-DNA genotype and the nopaline phenotype in the 322 backcross progeny of the nopaline positive transformants. Backcross progeny of two nopaline negative transformants showed incomplete correspondence between the T-DNA genotype and the kanamycin resistance phenotype. No alteration of T-DNA was observed in progeny showing a discrepancy between T-DNA and kanamycin resistance. However, two kanamycin resistant progeny plants of one of these two transformants possessed altered T-DNA restriction patterns, indicating genetic instability of the T-DNA in this transformant.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...