Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Archives of microbiology 129 (1981), S. 135-140 
    ISSN: 1432-072X
    Schlagwort(e): Pseudomonas fluorescens ; Assimilatory nitrate reduction ; Nitrate reductase ; Nitrate uptake ; Active transport ; Nitrogen-13 ; Short-lived isotope
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 μM. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Biology and fertility of soils 16 (1993), S. 221-226 
    ISSN: 1432-0789
    Schlagwort(e): Legume suppression ; Microbial pool ; 15N transformations ; Intercropped corn ; Alfalfa ; Medicago sativa
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract In greenhouse experiments, we examined the N transferred to intercropped corn from 15N-labeled alfalfa shoot residue and intact roots in an undisturbed soil system in response to two different suppression treatments and complete killing of alfalfa. The alfalfa treatments included complete killing (glyphosate only), glyphosate injury + cutting, and cutting only, with alfalfa shoot residue returned to the soil surface in all three treatments. Corn was planted in each pot following application of the treatments. When alfalfa was suppressed by glyphosate injury + cutting, corn had recovered 12% of the alfalfa N by 8 weeks of growth, but with cutting only, N recovery by corn was reduced to 4.0%. The completekill treatment resulted in 8% recovery by corn of alfalfa N. In all treatments, most of the alfalfa-N remained in the soil organic pool. A second experiment tested a cutting only treatment with 15N-labeled alfalfa residue returned to the soil surface. The 15N-labeled alfalfa residue contributed 4.1% of N to corn during the 8-week growth cycle. Twice as much 15N was found in the active microbial biomass pool in the two treatments with live intereropped plants compared to the monoculture treatments with complete killing (non-intercropped) and the control treatment of alfalfa regrowth only. An analysis of the change in the 15N content of the undisturbed alfalfa roots from just before the suppression until 8 weeks later suggested that approximately 80% of the root 15N was lost from the plant suppressed by cutting. This corresponds to 28% of the total N released from the alfalfa. The results suggest that the degree of legume suppression was a key factor in the availability of legume N to the second crop. When the two species were intercropped, more of the N available from legume residues went to plant uptake and microbial biomass and was not stabilized as quickly in the soil organic pool. Appropriate management schemes must be designed to increase N availability to the second crop without yield reduction. These studies suggest severe suppression is necessary; if successful, more of the N can be maintained in active pools.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...