Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Neural transplantation ; Striatum ; Ibotenic acid ; Wheat germ agglutinin-horseradish peroxidase tracing ; Afferent and efferent connections ; Dopamine
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The afferent and efferent connections of grafts of fetal caudate-putamen, implanted into the ibotenic acid (IA)-lesioned striatum of adult rats, have been studied with wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) as a combined retrograde and anterograde tracer, and with aldehyde fluorescence histochemistry for the visualisation of dopamine-containing nigrostriatal afferents from the host. The WGA-HRP was deposited in crystalline form (within a capillary tip) either into the depth of the graft tissue, or into the IA lesioned host striatum as a control. Labelling was only evaluated in specimens where the WGA-HRP deposit was entirely confined within the graft. Retrogradely labelled neurons were most consistently found in the ipsilateral host substantia nigra and the spared portions of the host CP, and in one case also in the midline and intralaminar thalamic nuclei normally projecting to the striatum. Some neurons, although weakly labelled, occurred in the deep layers of the frontal cortex in all grafted rats. Signs of anterograde WGA-HRP labelling in the host were found in one of the five animals in the ipsilateral globus pallidus and substantia nigra, pars reticulata. Fluorescence histochemistry revealed extensive ingrowth of dopamine-containing fibres from the host striatum into the grafted striatal tissue. The ingrowing fibres formed distinct and partly interconnected patches, most prominently in the peripheral regions of the grafts. The results provide evidence that intrastriatal grafts of fetal striatal tissue receive extensive dopaminergic afferents from the host substantia nigra, and that they may be capable of establishing connections also with thalamus, neocortex and globus pallidus of the host, as well as with the spared portions of the host caudate-putamen. The afferent connections from the thalamus and neocortex were notably more variable and sparse. However, since the control WGA-HRP deposits (into the lesioned host striatum) labelled the cortical and thalamic afferent neurons only poorly, it appears that the cortico-striatal and thalamo-striatal afferents (in contrast to the nigro-striatal ones) had undergone substantial degenerative changes (atrophy and/or cell death) in the long-term (6–11 months) IA-lesioned rats. The sparse thalamic and cortical afferent connections to the grafts may thus reflect an inability of the grafted striatal tissue to prevent the course of degenerative changes in these striatal input systems.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1106
    Schlagwort(e): In vivo voltammetry ; Neural transplantation ; Dopamine release ; Striatum
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary In vivo voltammetry was used to monitor dopamine (DA) neuron activity during the course of reinnervation of the initially denervated caudateputamen by grafted mesencephalic neurons. Fetal DA neurons were implanted as a cell suspension into the depth of the caudate-putamen in adult 6-hydroxydopamine-lesioned recipient rats. Recordings were performed over a period of 2.5–4 months, starting within a week after transplantation, using chronically implanted surface-treated multifiber carbon electrodes. The voltammetric method used in this study has generated considerable discussion centred on the ability of the multifiber electrodes to measure DA alone in vivo, but the results of previous studies have led to the conclusion that changes in the voltammetric signal most probably reflect dopaminergic terminal activity. It seems therefore possible to follow the time-course of changes in the voltammetric signal amplitude during the process of dopaminergic reinnervation of the host striatum from the grafts. A 6-hydroxydopamine lesion of the mesostriatal dopamine pathway caused a substantial (〉 80%) reduction of the voltammetric signal within 8–10 days, and the low residual signal remained essentially unchanged for time periods up to at least 5 months in the non-grafted control rats. In 7 of 11 rats with DA-rich grafts there was a recovery of the signal amplitude to levels within, or close to, the range recorded from the striatum of normal intact rats. The increase was observed 6–8 weeks after grafting in the rats which had received the largest transplants, and at about 13–14 weeks after grafting in the rats which had received the smallest ones. The recovery of the signal amplitude, from baseline to maximal response, was quite rapid and typically developed between two or three recording sessions, i.e. over a period of one to two weeks. In contrast to the intact striatum, the recovered signal in the graft-reinnervated striata showed a progressive decline within one hour of sampling time at high sampling frequencies (1 per min to 1 per 3 min). Grafted striata also showed a larger response to systemically administered amphetamine than did intact striata. Since the changes in the voltammetric signal recorded with the multifiber electrode mainly reflect dopaminergic terminal activity, the results provide evidence that the intrastriatal DA-rich grafts are spontaneously active, and that the grafted DA neurons can restore DA neuro-transmission in the reinnervated part of the host caudate-putamen to levels which are within the normal range. From the time-course of changes in the voltammetric signal it can be estimated that the outgrowing DA fibers, after an initial maturation period, expand from the graft into the host striatum at a maximum rate of about 0.1 mm per week, and that the advancing front of graft-derived fibers may be capable of saturating the area around the electrode tip with new terminals within a time period of about 1–2 weeks. The characteristics of the signal seem compatible with the view that the activity of the individual grafted DA neurons is greater than that of the mesostriatal DA neurons in situ.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-1106
    Schlagwort(e): Neural transplantation ; Dopamine neurons ; Allogeneic ; Skin graft ; Immunization ; Mouse
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The survival of grafts of dissociated allogeneic fetal neural dopamine (DA) rich tissue in the striatum has been studied after transplantation between inbred strains of mice differing at defined immunogenetical loci between donor and recipient. Six to 7 weeks and 15 weeks after grafting, surviving grafted DA neurons were found in the brains of all the recipients, albeit with a large variation in numbers, located either within the striatum or within the adjacent lateral ventricle. The mean number of surviving DA neurons did not differ between the syngeneic controls and the histoincompatible donor-host combinations, and there was no difference in survival between grafts that differed at single or multiple major histocompatibility complex (MHC) loci, and those that differed at multiple non-MHC loci. The amount of inflammatory cells in the graft area did not differ between the groups, and none of the animals showed massive infiltration of inflammatory cells. The in situ immunogenicity of the grafted neural tissue after intracerebral implantation was monitored by means of Simonsen's alloimmunization test, at 6–7 weeks after transplantation, which provides a sensitive measure primarily of the cellular immunological response. Most, but not all, graft recipients showed immunization with a Spleen Index (S.I.) close to that seen in recipients of an orthotopical skin graft of the same histoincompatibility combination. In contrast to the prolonged survival of the intracerebral neural transplants, none of the skin grafts survived longer than 3 weeks, thus demonstrating the immunologically privileged status of the brain. We conclude that intracerebrally grafted allogeneic neural tissue is capable of provoking a cellular immune response. Despite host immunization, however, the dissociated fetal neural allografts survived for at least 15 weeks without any overt signs of rejection, regardless of the donor-host combination used.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...