Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 263 (2000), S. 925-933 
    ISSN: 1617-4623
    Keywords: Key words S-like RNase ; Phosphate starvation ; Senescence ; RFLP ; Almond
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA for an S-like RNase (RNase PD2) has been isolated from a pistil cDNA library of Prunus dulcis cv. Ferragnés. The cDNA encodes an acidic protein of 226 amino acid residues with a molecular weight of 25 kDa. A potential N-glycosylation site is present at the N-terminus in RNase PD2. A signal peptide of 23 amino acid residues and a transmembrane domain are predicted. The two active-site histidines present in enzymes of the T2/S RNase superfamily were detected in RNase PD2. Its amino acid sequence shows 71.2% similarity to RNS1 of Arabidopsis and RNase T2 of chickpea, respectively. Northern blotting and RT-PCR analyses indicate that PD2 is expressed predominantly in petals, pistils of open flowers and leaves of the almond tree. Analyses of shoots cultured in vitro suggested that the expression of RNase PD2 is associated with phosphate starvation. Southern analysis detected two sequences related to RNase PD2 in the P. dulcis genome. RFLP analysis showed that S-like RNase genes are polymorphic in different almond cultivars. The PD2 gene sequence was amplified by PCR and two introns were shown to interrupt the coding region. Based on sequence analysis, we have defined three classes of S-like RNase genes, with the PD2 RNase gene representing a distinct class. The significance of the structural divergence of S-like RNase genes is further discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell reports 18 (1999), S. 387-393 
    ISSN: 1432-203X
    Keywords: Key words Almond ; Prunus ; Transformation ; Agrobacterium ; Adventitious regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Almond (Prunus dulcis Mill.) leaves were transformed with the marker genes gusA (β-glucuronidase) and nptII (neomycin phosphotransferase II) via Agrobacterium-mediated transformation. Bacterial strains and preculture of explants affected efficiency of gene transfer evaluated by transient expression assays. Following transformation, shoots were induced from primary explants on medium without kanamycin and exposed to selection 20 days after cocultivation. From 1419 original leaves, four shoots (A, B, C and D) were obtained that showed amplification of the predicted DNA fragments by polymerase chain reaction (PCR). After micropropagation of these shoots, only those cloned from shoot D gave consistently positive results in histochemical GUS detection and PCR amplification. Southern blot hybridisation confirmed stable transgene integration in clone D, which was also negative in PCR amplification of an Agrobacterium gene. Additional molecular analysis suggested that the remaining three shoots (A, B and C) were chimeric.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...