Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Analytical Chemistry and Spectroscopy  (2)
  • Archaea  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 11 (1995), S. 26-57 
    ISSN: 1573-0972
    Keywords: Acetate formation ; acetyl-CoA oxidation ; Archaea ; Bacteria ; chemolithoautotroph ; chemoorganoheterotroph ; glycolytic pathway ; hyperthermophiles ; metabolic pathways ; peptide metabolism ; sugar metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Hyperthermophiles are characterized by a temperature optimum for growth between 80 and 110°C. They are considered to represent the most ancient phenotype of living organisms and thus their metabolic design might reflect the situation at an early stage of evolution. Their modes of metabolism are diverse and include chemolithoautotrophic and chemoorganoheterotrophic. No extant phototrophic hyperthermophiles are known. Lithotrophic energy metabolism is mostly anaerobic or microaerophilic and based on the oxidation of H2 or S coupled to the reduction of S, SO inf4 sup2- , CO2 and NO inf3 sup- but rarely to O2. the substrates are derived from volcanic activities in hyperthermophilic habitats. The lithotrophic energy metabolism of hyperthermophiles appears to be similar to that of mesophiles. Autotrophic CO2 fixation proceeds via the reductive citric acid cycle, considered to be one of the first metabolic cycles, and via the reductive acetyl-CoA/carbon monoxide dehydrogenase pathway. The Calvin cycle has not been found in hyperthermophiles (or any Archaea). Organotrophic metabolism mainly involves peptides and sugars as substrates, which are either oxidized to CO2 by external electron acceptors or fermented to acetate and other products. Sugar catabolism in hyperthermophiles involves non-phosphorylated versions of the Entner-Doudoroff pathway and modified versions of the Embden-Meyerhof pathway. The ‘classical’ Embden-Meyerhof pathway is present in hyperthermophilic Bacteria (Thermotoga) but not in Archaea. All hyperthermophiles (and Archaea) tested so far utilize pyruvate:ferredoxin oxidoreductase for acetyl-CoA formation from pyruvate. Acetyl-CoA oxidation in anaerobic sulphur-reducing and aerobic hyperthermophiles proceeds via the citric acid cycle; in the hyperthermophilic sulphate-reducer Archaeoglobus an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway is operative. Acetate formation from acetyl-CoA in Archaea, including hyperthermophiles, is catalysed by acetyl-CoA synthetase (ADP-forming), a novel prokarvotic enzyme involved in energy conservation. In Bacteria, including the hyperthermophile Thermotoga, acetyl-CoA conversion to acetate involves two enzymes, phosphate acetyltransferase and acetate kinase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Organic Magnetic Resonance 12 (1979), S. 645-646 
    ISSN: 0030-4921
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Chemical shifts of the ring protons are determined by 1H NMR of 99% deuterated toluene. At low temperatures the deuterons relax rapidly, yielding sharp 1H peaks for the ortho, meta and para protons. These are compared with shifts obtained by other methods.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Organic Magnetic Resonance 22 (1984), S. 477-479 
    ISSN: 0030-4921
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: On the basis of the presence or absence of long-range spin-spin coupling constants between side-chain and ring nuclei in 2-methoxyacetophenone, some literature ambiguities about the conformational preferences of the side-chains in this compound can be resolved. The long-range coupling between the methoxy protons and the ring proton ortho to the methoxy group, 5J(H, CH3)o, is (-)0.28 ± 0.02 Hz, as expected for a conformation in which the methoxy group lies in the benzene plane and cis to H-3. The methyl protons of the acetyl group do not couple to H-6, implying that this methyl group does not approach H-6 closely. However, the 13C nucleus of this methyl group couples by +0.4 Hz to H-5 and not to H-3. This stereospecific five-bond coupling implies that the acetyl group predominantly prefers an arrangement in which the carbonyl group lies trans to the other substituent, as would be expected electrostatically. Large twists out of the ring plane are not consistent with the observed couplings.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...