Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 201-204 
    ISSN: 1432-0789
    Keywords: Fertilizer ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha−1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha−1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha−1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O. Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha−1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha−1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 195-199 
    ISSN: 1432-0789
    Keywords: Fertilizer N ; Nitrification ; Denitrification ; N2O emission ; Anhydrous ammonia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha−1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils. Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 μg NH4OH-N g−1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 μg NH4OH-N g−1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...