Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anti-cancer drugs  (1)
  • Cytoskeletal inhibitor  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/General Subjects 843 (1985), S. 83-91 
    ISSN: 0304-4165
    Keywords: (Rat intestine) ; Cytoskeletal inhibitor ; Fe absorption
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Key words Multidrug resistance ; Sulphonylurea ; ABC transporters ; Anti-cancer drugs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Glibenclamide is well known to interact with the sulphonylurea receptor (SUR) and has been shown more recently to inhibit the cystic fibrosis transmembrane conductance regulator protein (CFTR), both proteins that are members of the ABC [adenosine 5′-triphosphate (ATP)-binding cassette] transporters. The effect of glibenclamide and two synthetic sulphonylcyanoguanidine derivatives (dubbed BM-208 and BM-223) was examined on P-glycoprotein, the major ABC transporter responsible for multidrug resistance (MDR) in cancer cells. To this end, we employed different cell lines that do or do not express P-glycoprotein, as confirmed by Western blotting: first, a tumour cell line (VBL600) selected from a human T-cell line (CEM) derived from an acute leukaemia; second, an epithelial cell line derived from a rat colonic adenocarcinoma (CC531mdr+) and finally, a non tumour epithelial cell line derived from the proximal tubule of the opossum kidney (OK). Glibenclamide and the two related derivatives inhibited P-glycoprotein because firstly, they acutely increased [3H]colchicine accumulation in P-glycoprotein-expressing cell lines only; secondly BM-223 reversed the MDR phenomenon, quite similarly to verapamil, by enhancing the cytotoxicity of colchicine, taxol and vinblastine and thirdly, BM-208 and BM-223 blocked the photoaffinity-labelling of P-glycoprotein by [3H]azidopine. Furthermore, glibenclamide is itself a substrate for P-glycoprotein, since the cellular accumulation of [3H]glibenclamide was low and substantially increased by addition of P-glycoprotein substrates (e.g., vinblastine and cyclosporine) only in the P-glycoprotein-expressing cell lines. We conclude that glibenclamide and two sulphonylcyanoguanidine derivatives inhibit P-glycoprotein and that sulphonylurea drugs would appear to be general inhibitors of ABC transporters, suggesting an interaction with some conserved motif.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...