Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Apomixis ; Asynapsis ; B III hybrids ; Genome analysis ; Wheat ; Wide hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) florets were emasculated and pollinated using two apomictic wheatgrass [Elymus rectisetus (Nees in Lehm.) A. Love & Connor, 2n = 6x = 42, SSYYWW] accessions, one of which produces 2n pollen. A 2n = 42 (BII) hybrid and four 2n = 63 (B III) hybrids were obtained. The spike morphology of the B II hybrid was intermediate to that of its parents. The pollen mother cells (PMCs) of this hybrid contained on average 38.361 and 1.62 II, which was consistent with its disparate genome composition (ABDSYW). Its pollen failed to stain and no BC1 progeny was obtained. The B III hybrids (reduced egg fertilized with unreduced sperm) were grasslike and had a full complement of E. rectisetus chromosomes, the synapsis of which was slightly impaired by wheat haplome and/or cytoplasm. Their PMCs contained on average 16.30 II, 25.72 I, and 1.54 multivalents (III plus IV). Pollen stainability in these hybrids was low (〈1%), and when they were used as females, one 54- and 60-chromosome BC1 were obtained. A mean of 13.25 II was observed in PMCs of the 54-chromosome BC1 and pollen stainability was 10%. Pollen stainability in the 60-chromosome BC1 was only 5%. The use of 2n-pollen-producing E. rectisetus accession accelerated hybrid and BC1 formation and may accelerate the ultimate transfer of apomixis to wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 87 (1993), S. 97-105 
    ISSN: 1432-2242
    Keywords: Populus tremuloides ; Populus grandidentata ; Isozyme ; Restriction fragment length polymorphism ; Random amplified polymorphic DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined genetic variation in allozyme loci, nuclear DNA restriction fragment length polymorphisms (RFLPs), and random amplified polymorphic DNAs (RAPDs) in 130 trembling aspen (Populus tremuloides) and 105 bigtooth aspen (P. grandidentata) trees. In trembling aspen 10 out of 13 allozyme loci assayed (77%) were polymorphic (P), with 2.8 alleles per locus (A) and an expected heterozygosity (He) of 0.25. In contrast, bigtooth aspen had a much lower allozyme genetic variability (P=29%; A=1.4; He=0.08). The two species could be distinguished by mutually exclusive alleles at Idh-1, and bigtooth aspen has what appears to be a duplicate 6PG locus not present in trembling aspen. We used 138 random aspen genomic probes to reveal RFLPs in HindIII digests of aspen DNA. The majority of the probes were from sequences of low copy number. RFLP results were consistent with those of the allozyme analyses, with trembling aspen displaying higher genetic variation than bigtooth aspen (P=71%, A=2.7, and He=0.25 for trembling aspen; P=65%, A=1.8, and He=0.13 for bigtooth aspen). The two species could be distinguished by RFLPs revealed by 21 probes (15% of total probes assayed). RAPD patterns in both species were studied using four arbitrary decamer primers that revealed a total of 61 different amplified DNA fragments in trembling aspen and 56 in bigtooth aspen. Assuming a Hardy-Weinberg equilibrium, estimates of P=100%, A=2, and He=0.30 in trembling aspen and P=88%, A=1.9, and He=0.31 in bigtooth aspen were obtained from the RAPD data. Five amplified DNA fragments were species diagnostic. All individuals within both species, except for 2 that likely belong to the same clone, could be distinguished by comparing their RAPD patterns. These results indicate that (1) RFLPs and allozymes reveal comparable patterns of genetic variation in the two species, (2) trembling aspen is more genetically variable than bigtooth aspen at both the allozyme and DNA levels, (3) one can generate more polymorphic and species-specific loci with DNA markers than with allozymes in aspen, and (4) RAPDs provide a very powerful tool for “fingerprinting” aspen individuals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...