Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-0563
    Keywords: Schlüsselwörter Prostataspezifisches Antigen ; Transrektaler Ultraschall ; Artifizielle Neuronale Netzwerkanalyse ; Key words Prostate specific antigen ; Transrectal ultrasound ; Artificial neural network analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Abstract As a result of the enhanced clinical application of prostate specific antigen (PSA), an increasing number of men are becoming candidates for prostate cancer work-up. A high PSA value over 20 ng/ml is a good indicator of the presence of prostate cancer, but within the range of 4–10 ng/ml, it is rather unreliable. Even more alarming is the fact that prostate cancer has been found in 12–37% of patients with a “normal” PSA value of under 4 ng/ml (Hybritech). While PSA is capable of indicating a statistical risk of prostate cancer in a defined patient population, it is not able to localize cancer within the prostate gland or guide a biopsy needle to a suspicious area. This necessitates an additional effective diagnostic technique that is able to localize or rule out a malignant growth within the prostate. The methods available for the detection of these prostate cancers are digital rectal examination (DRE) and Transrectal ultasound (TRUS). DRE is not suitable for early detection, as about 70% of the palpable malignancies have already spread beyond the prostate. The classic problem of visual interpretation of TRUS images is that hypoechoic areas suspicious for cancer may be either normal or cancerous histologically. Moreover, about 25% of all cancers have been found to be isoechoic and therefore not distinguishable from normal-appearing areas. None of the current biobsy or imaging techniques are able to cope with this dilemma. Artificial neural networks (ANN) are complex nonlinear computational models, designed much like the neuronal organization of a brain. These networks are able to model complicated biologic relationships without making assumptions based on conventional statistical distributions. Applications in Medicine and Urology have been promising. One example of such an application will be discussed in detail: A new method of Artificial Neural Network Analysis (ANNA) was employed in an attempt to obtain existing subvisual information, other than the gray scale, from conventional TRUS and to improve the accuracy of prostate cancer identification.
    Notes: Zusammenfassung Das prostataspezifische Antigen (PSA) ist heutzutage der meistgenutzte Marker in der Diagnostik des Prostatakarzinoms. Hieraus resultiert eine vermehrte Anzahl von asymptomatischen Männern, die allein durch eine PSA-Werterhöhung Kandidaten für eine weiterführende Prostatadiagnostik werden. Ein deutlich erhöhter PSA-Serumwert (〉20 ng/ml) lässt mit hoher Wahrscheinlichkeit auf das Vorhandensein eines Prostatakarzinoms schließen. Im sog. Graubereich zwischen 4 und 10 ng/ml ist der Gewebemarker PSA meist durch gutartige Veränderungen beeinflusst, so dass eine Unterscheidung zwischen maligner und benigner Ursache aufgrund des PSA-Wertes allein nicht möglich ist [1–4]. Darüber hinaus findet man Karzinome bei Patienten, die ein PSA unter dem Normwert von 4 ng/ml aufweisen. Die Methoden, die bislang für die Früherkennung oder Erkennung des Prostatakarzinoms zur Verfügung standen (Tastbefund und Ultraschall) sind unzureichend. So sind ca. 70% der palpablen Tumoren nicht mehr organbegrenzt [5, 6]. Das klassische Problem der visuellen Ultraschallbeurteilung ist die mangelnde Spezifität, insbesondere bei geringer Erfahrung mit der Methode [7–11]. Um die diagnostischen Möglichkeiten des transrektalen Ultraschalls (TRUS) in der Prostatakarzinom-Früherkennung und -Stadieneinteilung zu erhöhen, wird in der hier vorgestellten Studie eine Artifizielle Neuronale Netzwerkanalyse (ANNA) eingesetzt, die zusätzliche subvisuelle, graustufendifferente Informationen des TRUS erfassen und auswerten kann [12–14]. Dieser Ansatz erscheint vielversprechend, da Artifizielle Neuronale Netzwerke die im Ultraschallbild vorhandenen komplexen Datenformationen erkennen können, sie gleichsam “lernen” und diese dann bei noch nicht gesehenen Datenformationen wiedererkennen und korrekt klassifizieren können [15].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...