Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 183 (1977), S. 423-444 
    ISSN: 1432-0878
    Keywords: Ascidian larva ; Adhesive papillae ; Settlement ; Myoepithelial cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The larva of Distaplia occidentalis bears three cup-shaped adhesive papillae, each with a prominent axial protrusion. At the onset of metamorphosis these organs rapidly evert through fenestrations in the cuticular layers of tunic exposing hyaline caps of adhesive. Additional adhesive material is secreted from collocytes during eversion. The stickiness of the papillae facilitates attachment to a variety of substrates. Each papilla is composed of more than 900 cells; six different types were identified. The wall of the cup contains about 260 myoepithelial cells with long attenuated processes. These extend from the rim of the cup to the base in the parietal (inner) layer. The apices of the myoepithelial cells are held in place by 11 pairs of specialized anchor cells bearing long bulbous microvilli. When the myoepithelial cells contract they force the axial protrusion forward and transform the papilla into a hyperboloidal configuration. The papilla is innervated by small motor fibers, but sensory fibers were not detected. The adhesive papillae of Distaplia are discussed in relationship to nine other recognizable types of papillae in the ascidians.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 174 (1976), S. 289-313 
    ISSN: 1432-0878
    Keywords: Ascidian larva ; Striated muscle ; Intercellular junctions ; Sarcoplasmic reticulum ; Interior couplings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The larval caudal musculature of the compound ascidian Diplosoma macdonaldi consists of two longitudinal bands of somatic striated muscle. Approximately 800 mononucleate cells, lying in rows between the epidermis and the notochord, constitute each muscle band. Unlike the caudal muscle cells of most other ascidian larvae, the myofibrils and apposed sarcoplasmic reticulum occupy both the cortical and the medullary sarcoplasm. The cross-striated myofibrils converge near the tapered ends of the caudal muscle cell and integrate into a field of myofilaments. The field originates and terminates at intermediate junctions at the transverse cellular boundaries. Close junctions and longitudinal and transverse segments of nonjunctional sarcolemmata flank the intermediate junctions, creating a transverse myomuscular (TMM) complex which superficially resembles the intercalated disk of the vertebrate heart. A perforated sheet of sarcoplasmic reticulum (SR) invests each myofibril. The sheet of SR spans between sarcomeres and is locally undifferentiated in relation to the cross-striations. Two to four saccular cisternae of SR near each sarcomeric Z-line establish interior (dyadic) couplings with an axial analogue of the vertebrate transverse tubular system. The axial tubules are invaginations of the sarcolemma within and adjacent to the intermediate junctions of the TMM complex. The caudal muscle cells of larval ascidians and the somatic striated muscle fibers of lower vertebrates bear similar relationships to the skeletal organs and share similar locomotor functions. At the cellular level, however, the larval ascidian caudal musculature more closely resembles the vertebrate myocardium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...