Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Meningitis ; C5a complement ; Macrophage ; Astrocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Subarachnoidal application of the complement C5a fragment was used to induce acute experimental meningitis in rabbits and rats within 30–60 min. The early stages of the cellular inflammatory response were studied by means of flow cytometry, transmission electron microscopy and immunofluorescence microscopy. Infiltration of polymorphonuclear leukocytes (PMN) into the subarachnoidal space was the earliest event of the inflammatory reaction. By morphological criteria we found that PMN interacted with cells of the mononuclear-macrophage lineage (MML) and the marginal astrocytes via pseudopodia, whereas the pial cells were not involved in early stages of the inflammatory response. The number of invaded MML that were positive with the ED2 marker increased, indicating the hematogenous origin of the immigrating cell population. PMN were found to infiltrate the perivascular space of the marginal arterial vessel segments. This perivascular infiltration was assumed to be the first manifestation of cerebral vasculitis. The intimate association of resident cerebral cells (astrocytes) with invading PMN and MML is suggestive of a transient interaction of these cell types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words Meningitis ; C5a complement ; Macrophage ; Astrocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Subarachnoidal application of the complement C5a fragment was used to induce acute experimental meningitis in rabbits and rats within 30–60 min. The early stages of the cellular inflammatory response were studied by means of flow cytometry, transmission electron microscopy and immunofluorescence microscopy. Infiltration of polymorphonuclear leukocytes (PMN) into the subarachnoidal space was the earliest event of the inflammatory reaction. By morphological criteria we found that PMN interacted with cells of the mononuclear-macrophage lineage (MML) and the marginal astrocytes via pseudopodia, whereas the pial cells were not involved in early stages of the inflammatory response. The number of invaded MML that were positive with the ED2 marker increased, indicating the hematogenous origin of the immigrating cell population. PMN were found to infiltrate the perivascular space of the marginal arterial vessel segments. This perivascular infiltration was assumed to be the first manifestation of cerebral vasculitis. The intimate association of resident cerebral cells (astrocytes) with invading PMN and MML is suggestive of a transient interaction of these cell types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 16 (1978), S. 381-390 
    ISSN: 1432-0630
    Keywords: 73 ; 72.20
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Indium-tin-oxide films (ITO films) sputtered in Ar-atmosphere with and without addition of oxygen reveal an irreversible increase in conductivity during annealing in vacuum. This annealing process increases drastically the density of free electrons, while the Hall mobility changes only slightly. Below the annealing temperature the temperature dependence of the conductivity is reversible. In films with low density of free electrons, which behave like non-degenerated semiconductors, two activation energies for the mobility could be found. The irreversible changes, observed during annealing in the vacuum, are explained by diffusion of oxygen from the interior of the film to the surface, followed by desorption of the oxygen from the surface into the vacuum. The excess oxygen in the non-stoichiometric films plays the role of electron traps. The irreversible effects during annealing in the vacuum are partly reversible in the long run. If the annealed films are exposed to oxygen or air their conductivity decreases because of diffusion of oxygen from the surface into the film.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...