Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 35 (1998), S. 258-262 
    ISSN: 1432-0495
    Keywords: Key words Speleothem ; Cement grouting ; Atmospheric CO2 sink
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Based on the analyses and comparisons of water chemistry, stable carbon isotopes and deposition rates of speleothems, the authors found that there are two kinds of speleothems in the tunnels at the Wujiangdu Dam site, Guizhou, China, namely the CO2-outgassing type and the CO2-absorbing type. The former is natural, as observed in general karst caves, and the product of karst processes under natural conditions. The latter, however, is special, resulting from the carbonation of a cement-grouting curtain and concrete. Due to the quick absorption of CO2 from the surrounding atmosphere, evidenced by the low CO2 content in the air and the high deposition rate of speleothems (as high as 10 cm/a) in the tunnels, the contribution of the carbonation process to the sink of CO2 in the atmosphere is important (in the order of magnitude of 108 tons c/a) and should be taken into consideration in the study of the global carbon cycle because of the use of cement on a worldwide scale.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 39 (2000), S. 1053-1058 
    ISSN: 1432-0495
    Keywords: Key words Carbonate rock weathering ; Soil CO2 ; Atmospheric CO2 sink
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract To accurately predict future CO2 levels in the atmosphere, which is crucial in predicting global climate change, the sources and sinks of the atmospheric CO2 and their change over time must be determined. In this paper, some typical cases are examined using published and unpublished data. Firstly, the sensitivity of carbonate rock weathering (including the effects by both dissolution and reprecipitation of carbonate) to the change of soil CO2 and runoff will be discussed, and then the net amount of CO2 removed from the atmosphere in the carbonate rock areas of mainland China and the world will be determined by the hydrochem-discharge and carbonate-rock-tablet methods, to obtain an estimate of the contribution of carbonate rock weathering to the atmospheric CO2 sink. These contributions are about 0.018 billion metric tons of carbon/a and 0.11 billion metric tons of carbon/a for China and the world, respectively. Further, by the DBL (Diffusion Boundary Layer)-model calculation, the potential CO2 sink by carbonate rock dissolution is estimated to be 0.41 billion metric tons of carbon/a for the world. Therefore, the potential CO2 source by carbonate reprecipitation is 0.3 billion metric tons of carbon/a.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...