Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 59 (1996), S. 109-117 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A local grid method proposed earlier is used to model chemical dynamical events in more than one dimension. Two different mean-field routes are applied to model problems representing dynamics of isomerization, H+-ion transfer, energy transfer, etc. The methods are seen to work with equal facility for both time-dependent and time-independent potentials. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 51 (1994), S. 293-305 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The Fourier grid Hamiltonian method is used to calculate the response properties of different types of 1-d (one-dimensional) quantum oscillators in a uniform static electric field. The calculations are potentially exact. Excepting the harmonic oscillator, the other model oscillators studied are seen to possess nonlinear polarizabilities. In general, the polarizabilities are not monotonic functions of appropriate vibrational quantum numbers. The exact nature of this vibrational-state dependence of polarizabilities is shown to depend on the type of mechanical anharmonicity in which the nuclei move and the nature of electrical anharmonicity characterizing the field-oscillator coupling. The large vibrational contribution to nonlinear polarizabilities often predicted for real diatomics could therefore originate from the mechanical and electrical anharmonicities of the potential in which the nuclei move when placed in a static electric field. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...