Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 60 (1996), S. 1291-1301 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We present a computational scheme to study the dynamics of many-electrons in molecular systems by wavepackets method. Several approaches to calculation of nonlinear optical properties for molecules under time-independent or time-dependent external electric fields are presented. Some simple examples of one-dimensional two- or three-electron systems are demonstrated concretely. Implications of these results are discussed in relation to the validity of the many electron wavepackets (MEWP) method. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 60 (1996), S. 1261-1270 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have already developed the many-electron wavepackets (MEWP) method in order to study the dynamics and electronic structure of molecular systems. We extended the MEWP method to study the nonadiabatic effects and formulated a nonadiabatic molecular theory, where both electron and nucleus are treated equivalently. Then we applied our method to the isotope series of hydrogen molecule i.e., H2, HD, and D2, and calculated the total energy and the average distance between nucleus-nucleus, electron-electron, and nucleus-electron in order to analyze numerically the nonadiabatic effect in the molecule. Finally we calculated the real-time evolution of the polarization by means of Chebyshev scheme; and by Fourier transforming this, we found out the excitation spectrum of the system, which corresponds to the electronic excitation and the nuclear vibrational frequency. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...