Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Surveys in geophysics 17 (1996), S. 347-360 
    ISSN: 1573-0956
    Keywords: Ultrasonic waves ; Attenuation ; Velocity ; Microstructure ; Thermal cracking ; Local fluid flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The frequency dependent mechanism of local fluid flow was found to be the decisive absorption and dispersion mechanism in fluid containing sandstones. In the ultrasonic frequency range local fluid flow and grain surface effects control the behaviour of highly porous and highly permeable rock if a pore fluid is present. Both mechanisms depend less on macroscopic rock parameters like porosity and permeability than essentially on microscopic parameters like crack size, crack density and grain contact properties. To demonstrate directly the important influence of the microstructure on the rock elastic and anelastic properties the microstructure of a sandstone was artificially changed by thermal cracking. The cracked rock exhibits a clearly changed behaviour at low uniaxial as well as at high hydrostatic pressure despite small changes of porosity and permeability. Fluid effects increase due to cracking. The experimental results are explained by means of a rock, model and local fluid flow. These results emphasize that it is the microstructure which controls the elastic and anelastic rock behaviour, even at high hydrostatic pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...