Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1238
    Keywords: Key words Local cerebral blood flow ; Autoradiography ; Hemorrhagic hypovolemia ; Hemorrhagic shock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Objective: Of the animal models of human hemorrhagic shock, the volume-controlled hemorrhage model appears to come closer to the clinical situation than the commonly used pressure-controlled model, since the volume-controlled model allows regulatory adjustment of blood pressure. The effects of volume-controlled hemorrhage on local cerebral blood flow (LCBF) of conscious animals are not known. The present study investigates specific reaction patterns of LCBF in comparison to mean cerebral blood flow (CBF) during graded volume-controlled hemorrhagic shock in conscious rats. Methods: Conscious, spontaneously breathing, and minimally restrained rats were subjected to different degrees of volume-controlled hemorrhage (taking either 25, 30, 35, or 40 ml arterial blood/kg body weight (b.w.). Thirty minutes after the completion of blood taking, LCBF was determined during hemorrhagic hypovolemia using the autoradiographic iodo (14C) antipyrine method. A group of untreated rats (no hemorrhage) served as controls. LCBF was determined in 34 defined brain structures and mean CBF was calculated. Results: During less severe hemorrhage (25 and 30 ml/kg b.w.) mean CBF was significantly higher than in the control group (+19% and +25%). During severe hemorrhage (35 and 40 ml/kg b.w.) mean CBF remained unchanged compared to the control values, although significant increases in LCBF could be detected in many of the brain structures analyzed (maximum +44%). The mean coefficient of variation of CBF was increased, indicating a larger heterogeneity of LCBF values at shed blood volumes of 35 and 40 ml/kg b.w. Conclusions: A comprehensive and novel description of the local distribution of CBF during graded volume-controlled hemorrhage in conscious rats shows unexpected increases in LCBF and mean CBF. This ”hypovolemic cerebral hyperemia“ might be caused by endogenous hemodilution, thus maintaining the blood supply to the brain during hypovolemic shock.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...