Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Avena (phytochrome) ; Conformational change (phytochrome) ; Monoclonal antibody (phytochrome) ; Zea (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Monoclonal antibodies to defined locations on six regions of the phytochrome molecule (from Avena sativa L. or Zea mays L.) were each found to have a different affinity toward the farred-absorbing form of phytochrome (Pfr) and the red-absorbing form (Pr). The differences were small, but were consistently shown by antibodies which bind to the vicinity of the aminoterminus, the carboxylterminus and to sequences in between. It seems that the conformational differences between Pr and Pfr extend over the whole molecule in as far as it is represented by these regions and the antibodies binding to them.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Avena (phytochrome) ; Endoproteinases ; Phytochrome (conformation) ; Trypsin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Proteolytic fragments were obtained by limited proteolysis of 124-kDa (kilodalton) phytochrome from etiolatedAvena sativa using trypsin, endoproteinase-Lys-C, endoproteinase-Glu-C and subtilisin. The fragments were separated by sodium dodecyl sulfate gel electrophoresis, blotted onto activated glass-fiber sheets and investigated by amino-acid sequencing in a gas-phase sequencer. Determination of N-terminal sequences in three to six Edman degradation steps allowed the exact localization of the fragments within the published entire amino-acid sequence of 124-kDaAvena phytochrome (H.P. Hershey, R.F. Barker, K.B. Idler, J.L. Lissemore, P.H. Quail (1985), Nucleic Acids Res.13, 8543–8559). From the knowledge of the exact sites for preferred proteolytic cleavage of undenatured phytochrome, conclusions on the conformation of the phytochrome protein were drawn. Sites of preferred cleavage are considered to be freely exposed to the environment whereas potential cleavage sites which are resistant to proteolysis over a long time are considered to be localized in the interior of the native phytochrome. Two different sites which are exposed in the far-red-absorbing form but not in the red-absorbing form of phytochrome are localized at amino-acid residues 354 and 753, respectively. The N-terminal region which is exposed only in the red-absorbing form stretches only as far as amino-acid residue 60.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Avena (phytochrome) ; Bryophyta (phytochrome) ; Monoclonal antibody (phytochrome) ; Phytochrome in different plant phyla ; Pteridophyta (phytochrome) ; Zea (phytochrome)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cross-reactivity of diverse monoclonal antibodies against phytochrome from Zea and Avena was tested by enzyme-linked immunosorbentassay (ELISA) and by immunoblotting. About 40 antibodies were selected by means of nondenatured phytochrome; all of them reacted with sodium dodecyl sulfate denatured homologous antigen on immunoblots. The epitopes for 14 antibodies (4 raised against Avena and 10 against Zea phytochrome) were localized in 6 regions of the phytochrome molecule by means of Western blot analysis of proteolytic fragments of known localization. Results of studies on the inhibition of antibody binding by other antibodies were largely compatible with these latter findings. Except in a few cases, inhibition occurred when antibodies were located on the same or a closely adjacent region. As demonstrated by 16 species, cross-reactivity with phytochromes from other Poaceae was high. Greater losses in cross-reactivity were observed only with antibodies recognizing an epitope in the vicinity of the carboxyl terminus of 118-kg · mol-1 phytochrome. Cross-reactivity with phytochrome from dicotyledons was restricted to a few antibodies. However, phytochrome(s) from plants illuminated for 24 h or more could be detected. One of the antibodies that recognized phytochrome from dicotyledons was also found to recognize phytochrome or a protein of 120–125 kg·mol-1 from several ferns, a liverwort and mosses. This antibody (Z-3B1), which was localized within a 23.5-kg·mol-1 section of Avena phytochrome (Grimm et al., 1986, Z. Naturforsch. 41c, 993), seems to be the first antibody raised against phytochrome from a monocotyledon with such a wide range of reactivity. Even though epitopes were recognized on different phytochromes, the strength of antibody binding indicated that these epitopes are not necessarily wholly identical.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...