Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Islets of Langerhans ; B-cell replication ; insulin release ; insulin biosynthesis ; growth hormone ; insulin-like growth factor I ; somatomedin C
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We have investigated whether the previously demonstrated stimulatory actions of growth hormone on DNA synthesis and (pro)insulin biosynthesis and release of isolated adult rat islets of Langerhans are mediated by an autocrine release of somatomedin-C/insulin-like growth factor I (SM-C/IGF I). In medium containing 1% fetal calf serum, the presence of 16.7 mmol/l glucose, or 2.7 mmol/l glucose supplemented with a concentrate of essential amino acids, caused a significant increase in 3H-thymidine incorporation and insulin release compared to 2.7 mmol/l glucose alone but no increase in SM-C/IGFI release. Further supplementation with 1 μg/ml growth hormone increased 3H-thymidine incorporation and SM-C/IGF I release within all groups, and insulin release in the 16.7 mmol/l glucose and 2.7 mmol/l plus amino acid groups. The ability of growth hormone to increase 3H-thymidine incorporation in the presence of 16.7 mmol/l glucose, but not its action on insulin release, was partly inhibited by a monoclonal antibody against SM-C/IGF I (control cultures 100%; growth hormone alone 261±27%, mean±SEM; growth hormone+anti-SM-C/IGFI 179±21%; p〈0.05, n=18). Growth hormone, but not 100 ng/ml SM-C/IGF I, increased insulin biosynthesis assessed as immunoprecipitable 3H-labelled insulin by 45%, but this was accompanied by a similar increase in overall protein synthesis. Similarly growth hormone, but not SM-C/IGF I caused a 75% increase in glucose oxidation by islets. Both growth hormone and SM-C/IGF I failed to increase the cellular uptake of α-aminoisobutyric acid or 3-O-methyl glucose over a 90 min period. The results suggest that while the stimulatory effect of growth hormone on islet cell insulin biosynthesis and release, glucose oxidation and general protein synthesis is probably direct, its action on B-cell replication is partly mediated by a paracrine release of SM-C/IGF I. This may provide a mechanism for increasing B-cell mass and consequently total insulin output during times of increased metabolic demands on insulin secretion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 252 (1988), S. 9-15 
    ISSN: 1432-0878
    Keywords: Pancreas, endocrine ; Insulin ; Immunocytochemistry ; Lysosomes ; Crinophagy ; Mouse (NMRI)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Ultrastructural studies of pancreatic islets have suggested that crinophagy provides a possible mechanism for intracellular degradation of insulin in the insulin-producing B-cells. In the present study, a quantitative estimation of crinophagy in mouse pancreatic islets was attempted by morphometric analysis of lysosomes containing immunoreactive insulin. Isolated islets were incubated in tissue culture for one week in 3.3, 5.5 or 28 mmol/l glucose. The lysosomes of the pancreatic B-cells were identified by morphological and enzyme-cytochemical criteria and divided into three subpopulations comprising primary lysosomes and insulin-positive or insulin-negative secondary lysosomes. Both the volume and numerical density of the primary lysosomes increased with increasing glucose concentration. The proportion of insulin-containing secondary lysosomes was highest at 5.5 and lowest at 3.3 mmol/l glucose. Insulin-negative secondary lysosomes predominated at 3.3 mmol/l glucose. Studies of the dose-response relationships of glucose-stimulated insulin biosynthesis and insulin secretion of the pancreatic islets showed that biosynthesis had an apparent Km-value for glucose of 7.0 mmol/l, whereas it was 14.5 mmol/l for secretion. The pronounced crinophagic activity at 5.5 mmol/l glucose may thus be explained by the difference in glucose sensitivity between insulin biosynthesis and secretion resulting in an intracellular accumulation of insulin-containing secretory granules. The predominance of insulin-negative secondary lysosomes at 3.3 mmol/l glucose may reflect an increased autophagy, whereas the predominance of primary lysosomes at 28 mmol/l glucose may reflect a generally low activity of intracellular degradative processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...