Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • BAG-1  (1)
  • Brassica campestris  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Molecular genetics and genomics 256 (1997), S. 257-264 
    ISSN: 1617-4623
    Schlagwort(e): Key words Self-incompatibility ; Brassica campestris ; Receptor-like kinase ; S multigene family ; Gene cluster
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-675X
    Schlagwort(e): Apoptosis ; apoptin ; BAG-1 ; Bcl-2 ; p53 ; programmed cell death
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract BAG-1 has been identified as a Bcl-2-binding protein that inhibits apoptosis, either alone or in co-operation with Bcl-2. Here we show that BAG-1 inhibits p53- induced apoptosis in the human tumour cell line Saos-2. In contrast, BAG-1 was unable to inhibit the p53-independent pathway induced by apoptin, an apoptosis-inducing protein derived from chicken anaemia virus. Whereas BAG-1 seemed to co-operate with Bcl-2 to repress p53-induced apoptosis, co-expression of these proteins had no inhibitory effect on apoptin-induced apoptosis. Moreover, Bcl-2, and to some extent also BAG-1, paradoxically enhanced the apoptotic activity of apoptin. These results demonstrate that p53 and apoptin induce apoptosis through independent pathways, which are differentially regulated by BAG-1 and Bcl-2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...