Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomolecular NMR 10 (1997), S. 383-388 
    ISSN: 1573-5001
    Keywords: Antisense oligonucleotides ; Backbone modification ; Diffusion constant ; Hairpin conformation ; Pulsed field gradient NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Pulsed field gradient diffusion constant measurements were used to resolve the ambiguity in determining the conformational states of single-stranded DNA dodecanucleotides (d1s, d4s and d5s). For d1s and d5s, because of the spectral symmetry conventional NMR analyses cannot differentiate whether they are hairpins or homo-duplexes. However, the diffusion constants of these sequences at 300 K are 1.4 times greater than those of the comparison complementary duplexes. This result agrees well with what is expected for Dhairpin〉/Dduplex based on classic liquid-phase translational diffusion models and the Einstein–Stokes equation, confirming that d1s and d5s form hairpins. d4s did not show a structured spectral pattern, but its diffusion constant measurement suggests that this sequence may not be a random coil. The DNA sequences studied contain chemically modified backbone linkages and are potential antisense agents for gene regulation. The knowledge of their diffusion constants, in combination with conventional NMR analysis and other biophysical spectroscopic measurements, provides new insights into the relationships of chemical structure and conformational preference of antisense oligonucleotides and their analogs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...