Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Basic fibroblast growth factor ; Forebrain ischemia ; Astrocyte ; Immunoreactivity ; mRNA level ; Hippocampus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We examined the time course of basic fibroblast growth factor (bFGF) immunoreactivity and its mRNA level mainly in the hippocampus after transient forebrain ischemia using immunohistochemistry, enzyme immunoassay (EIA), Western blot analysis and in situ hybridization. Neuronal death in the hippocampal CA1 subfield was observed 72 h after 20 min of ischemia. The number of bFGF-immunoreactive(IR) cells increased 48 h–5 days after ischemia in all hippocampal regions. At 10 and 30 days, the bFGF-IR cells in the CA1 subfield had further increased in numbers and altered their morphology, enlarging and turning into typical reactive astrocytes with the advancing neuronal death in that area. In contrast, the number of bFGF-IR cells in other hippocampal regions had decreased 30 days after ischemia. The EIA study showed a drastic increase in bFGF levels in the hippocampus 48 h after ischemia (150% of that in normal rat) which was followed by further increases. In Western blot analysis, three immunoreactive bands whose molecular weights correspond to 18, 22 and 24 kDa were observed in normal rat and ischemia increased all their immunoreactivities. In the in situ hybridization study of the hippocampus, bFGF mRNA positive cells were observed in the CA1 subfield in which many bFGF-IR cells existed after ischemia. These data demonstrate that transient forebrain ischemia leads to an early and strong induction of bFGF synthesis in astrocytes, suggesting that the role of bFGF is related to the function of the reactive astrocytes which appear following brain injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Fibroblast growth factor receptor ; Basic fibroblast growth factor ; Forebrain ischemia ; Astrocyte ; In situ hybridization ; Hippocampus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recently, we demonstrated that transient forebrain ischemia in rats leads to an early and strong induction of basic fibroblast growth factor (bFGF) synthesis in astrocytes in the injured brain regions. In this study, in order to clarify the targets of such raised endogenous bFGF levels, the messenger RNA (mRNA) expression of its receptors (flg and bek) at in the hippocampus following transient forebrain ischemia induced by four-vessel occlusion for 20 min was investigated using an in situ hybridization technique. Transient forebrain ischemia induced an increase in the number of flg mRNA-positive cells from an early stage (24 h after ischemia) in the hippocampal CA1 subfield where delayed neuronal death occurred later (48–72 h after ischemia). This increase became more marked with the progression of neuronal death and was still evident in the same area 30 days later. The time course of the appearance and distribution pattern of flg mRNA-positive cells in the CA1 subfield were quite similar to those of bFGF mRNA-positive cells. On the other hand, in situ hybridization for bek mRNA showed only slight and transient (observed 72 h and 5 days after ischemia) increases in the number of mRNA-positive cells in the CA1 subfield following ischemia. The use of in situ hybridization and glial fibrillary acidic protein immunohistochemistry in combination demonstrated that the cells in the CA1 subfield that exhibited ischemia-induced flg or bek mRNA expression were astrocytes. These data indicate that transient forebrain ischemia induces upregulation of fibroblast growth factor-receptor expression, accompanied by increased bFGF expression in astrocytes, and suggest that the increased astrocytic bFGF levels in injured brain regions act on the astrocytes via autocrine systems and are involved in the development and maintenance of astrocytosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...