Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Phanerochaete chrysosporium ; DNA transformation ; Basidiomycete ; Adenine biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A clone containing the Phanerochaete chrysosporium ade1 gene was isolated from a λEMBL3 genomic library using the ade5 gene encoding aminoimidazole ribonucleotide synthetase, from Schizophyllum commune, as a probe. A 6.0 kb fragment incorporating the ade1 gene was subcloned into pUC18 (pADE1) and used to transform the P. chrysosporium ade1 auxotrophic strain. Transformation frequencies were similar to those obtained previously with the S. commune ade5 gene; however, homologous transformants arose earlier than heterologous transformants. The transformants were mitotically and meiotically stable and Southern blot analysis indicated that the plasmid, pADE1, integrated ectopically in single or multiple copies. The pADE1 insert was mapped for restriction sites and the approximate location of the ade1 gene within the insert was determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Phanerochaete chrysosporium ; DNA transformation ; Basidiomycete ; Uracil auxotrophs ; Homothallism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Uracil auxotrophs of Phanerochaete chrysosporium were isolated using 5-fluoroorotate resistance as a selection scheme. The ura3 auxotrophs deficient in orotidylate decarboxylase and ura5 auxotrophs deficient in orotate phosphoribosyl transferase were characterized by enzyme assays and complementation tests. The ura5 auxotrophs were transformed to prototrophy with the ura5 gene from the ascomycete Podospora anserina. The ura3 auxotrophs were transformed to prototrophy with the ura3 gene from the basidiomycete Schizophyllum commune. The P. chrysosporium ura3 gene was isolated from a γEMBL3 genomic library using the S. commune ura3 gene as a probe. A 6.6-kb fragment incorporating the ura3 gene was subcloned into Bluescript SK+(pURA3.1) and used to transform P. chrysosporium ura3 auxotrophic strains. The pURA3.1 insert was mapped for restriction sites and the approximate location of the ura3 gene within the insert was determined. Double auxotrophic strains were transformed with either of two marker genes and the resulting single auxotrophic strains were crossed to demonstrate genetic recombination between two nuclei of identical genetic background.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 123 (1979), S. 319-321 
    ISSN: 1432-072X
    Keywords: Basidiomycete ; Vanillic acid ; Vanillate hydroxylase ; Monooxygenase ; Methoxy-p-hydroquinone ; Lignin biodegradation ; Phanerochaete chrysosporium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A soluble enzyme fraction from Phanerochaete chrysosporium catalyzed the oxidative decarboxylation of vanillic acid to methoxy-p-hydroquinone. The enzyme, partially purified by ammonium sulfate precipitation, required NADPH and molecular oxygen for activity. NADH was not effective. Optimal activity was displayed between pH 7.5–8.5. Neither EDTA, KCN, NaN3, nor o-phenanthroline (5 mM) were inhibitory. The enzyme was inducible with maximal activity displayed after incubation of previously grown cells with 0.1% vanillate for 30h.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 121 (1979), S. 37-41 
    ISSN: 1432-072X
    Keywords: Basidiomycete ; Basidiospores ; Fruit body ; Hymenium ; Catabolite repression ; Nitrogen repression ; cAMP ; Phanerochaete chrysosporium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Phanerochaete chrysosporium fruit body formations is subject to strong catabolite repression by glucose in the presence of physiological levels of nitrogen. Walseth cellulose was found to be the best source of carbon for the induction of fruit body and consequent basidiospore synthesis. Ejected basidiospores collected from cultures grown under these conditions for two weeks are contaminated with neither conidia nor mycelial fragments and are therefore suitable for genetic analysis of recombination. Under conditions of nitrogen limitation, the glucose catabolite repression of fruit body synthesis was relieved. Exogenous adenosine 3′,5′-monophosphate but not other related nucleotides, also relieved glucose catabolite repression of fruit body formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Phanerochaete chrysosporium ; Lignin model compounds ; Lignin degradation ; Diarylpropane ; α,β cleavage ; Anisyl alcohol ; Lignin ; Basidiomycete
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The white rot basidiomycete Phanerochaete chrysosporium metabolized 1-(3′,4′-diethoxyphenyl)-1,3(dihydroxy)-2-(4′'-methoxyphenyl)-propane (XII) in low nitrogen stationary cultures, conditions under which the ligninolytic enzyme system is expressed. 3,4-Diethoxybenzyl alcohol (IV), 1,2(dihydroxy)-1-(4′-methoxyphenyl)ethane (XX) and anisyl alcohol were isolated as metabolic products indicating an initial α, β bond cleavage of this dimer. Exogenously added XX was rapidly converted to anisyl alcohol, indicating that XX is an intermediate in the metabolism of XII. Fungal cleavage of the α, β bond of 1-(3′-4′-diethoxyphenyl)-1-(hydroxy)-2-(4′'-methoxyphenyl)ethane (XI) also occurred, indicating that a γ hydroxymethyl group is not a prerequisite for this reaction. P. chrysosporium also metabolized 1-(4′-ethoxy-3′-methoxyphenyl)-2,2(dihydroxy)-2-(4′'-methoxyphenyl)propane-1-ol (XIII). The major products of the degradation of this triol included 4-ethoxy-3-methoxybenzyl alcohol (III) and 2-hydroxy-1-(4′-methoxyphenyl)-1-oxoethane (XXI). The nature of the products formed indicates that this triol is also cleaved directly at the α,β bond. The significant difference in the nature of the products formed from the diaryl propane (XII) and the triol (XIII), however, suggests that XIII is not an intermediate in the major pathway for the degradation of XII. Metabolites were identified after comparison with chemically synthesized standards by GLC-mass spectrometry.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Digestive diseases and sciences 43 (1998), S. 1746-1751 
    ISSN: 1573-2568
    Keywords: ANTITHROMBIN III ; THROMBIN ; ACETALDEHYDE ; ALCOHOL ; ALCOHOLISM ; BLOOD COAGULATION
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The anticoagulant activity of antithrombin III(ATIII), as observed in a plasma-free system consistingof thrombin and fibrinogen, is readily reduced byacetaldehyde (AcH) at concentrations of 447, 89.4, and 17.9 mM. Whereas controlthrombin-fibrinogen mixtures clotted in 17.7 ±0.75 sec, ATIII prolonged clotting time to 55.0 ±1.75 sec on preincubation with thrombin for 30 min atroom temperature. On subsequent preincubation of ATIII with theAcH for 30 min at room temperature and passage of themixture through Sephadex G-25 minicolumns to removeexcess AcH, the eluates were tested for anticoagulant activity. Clotting times of 20.9 ± 1.0,32.3 ± 1.0, and 45.3 ± 1.6 sec wereobtained with 447, 89.4, and 17.9 mM AcH-ATIII mixtures,respectively. These data suggest that functional groupson ATIII, such as guanidiniums, aminos, and others aresusceptible to adduct formation with AcH, therebyaltering the shape and charge of the anticoagulant. Asa consequence of this type of reaction, an alteredmolecule of reduced biological activity may be produced.These experimental results may explain, in part, thereduction in ATIII levels reported by others in patientswith alcoholic liver disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Digestive diseases and sciences 44 (1999), S. 1349-1355 
    ISSN: 1573-2568
    Keywords: ANTITHROMBIN III ; THROMBIN ; HEPARIN ; BLOOD COAGULATION ; ACETALDEHYDE ; ALCOHOL ; ALCOHOLISM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Acetaldehyde (AcH) at preincubationconcentrations of 447, 89.4, and 17.9 mM potentiates theeffects of heparin on the clotting time of plasma. Whilecontrol plasma clotted in the range of 12.6 ± 0.1 to 13.8 ± 0.1 sec, and heparin-treatedplasma clotted in a range from 131.5 ± 2.5 to168.2 ± 1.2 sec, heparin that was preincubated atroom temperature for 30 min with 89.4 or 447 mM AcH didnot clot plasma in 300 sec. Heparin exposed to 17.9 mMAcH clotted plasma in 193 ± 1.1 sec. Ethanol ata 404 mM concentration also prolonged the clotting timeof heparin-treated plasma 〉300 sec, while 202 mM ethanol prolonged the clotting time ofheparin-treated plasma from 149.0 ± 2.0 sec to219.5 ± 1.7 sec. It is suggested that AcH altersthe tertiary structure of heparin by adduct formation,possibly by formation of cyclic acetals with iduronicand glucuronic acids, thereby more readily affectingbinding of the glycosaminoglycan to antithrombin IIIand/or thrombin, prolonging clotting time. Ethanol, which does not react covalently with heparin,might affect its conformation as a consequence of anorganic solvent effect. Protamine sulfate prolonged theclotting time of plasma from 13.6 ± 0.1 sec to 17.9 ± 0.2 sec. Protaminesulfate-treated heparin clotted plasma in 21.0 ±0.4 sec relative to heparin-treated plasma (160.4± 1.7 sec). In subsequent experiments,AcH-treated protamine sulfate extended the clotting time of protamine sulfate from17.9 ± 0 sec to 33.7 ± 0.6 sec. Prioraddition of protamine sulfate to AcH- heparin mixturesor heparin to protamine sulfate-AcH mixtures beforeaddition to plasma resulted in clotting times of 22.0± 0.4 sec and 24.1 ± 0.5 sec,respectively, relative to control clotting times of162.3 ± 2.6 sec for plasma-heparin mixtures.These results confirm both the reduction in coagulation time ofheparin-treated plasma by protamine sulfate and theprolongation of clotting time of plasma by protaminesulfate. Furthermore, and importantly, they indicatethat acetaldehyde-treated protamine sulfate is a more effectiveanticoagulant than protamine sulfate. It is suggestedthat reversible adduct formation between acetaldehyde,heparin, and protamine sulfate may occur as a meansexplaining the essentially identical coagulation time ofthese mixtures when added to plasma regardless of theorder of premixing. Ethanol (404 mM) did not influenceprotamine sulfate effects. Lastly, the potentiation of the anticoagulant function of heparin byacetaldehyde suggests that a structural modification ofthe glycosaminoglycan may occur in alcoholics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-2568
    Keywords: ALCOHOL ; COAGULATION ; FACTOR VII ; FACTOR IX ; ACETALDEHYDE
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The first metabolite of ethanol, acetaldehyde,has the ability to form adducts with proteins and altertheir function. It has been shown that acetaldehydereacts with various proteins of the blood coagulation pathway and, subsequently, produces aprolongation of the clotting time. This study evaluatedthe function of clotting proteins from the extrinsiccoagulation pathway (factor VII) and the intrinsiccoagulation pathway (factor IX) when preincubated withacetaldehyde as compared to a control and compared topreincubation with ethanol. Prior to use in a clottingassay, incubation times with acetaldehyde, ethanol, and the control were the same for both factorsVII and IX. An automatic fibrometer measured theclotting times. Factor VII preincubated withacetaldehyde prolonged the clotting time. However,factor IX preincubated with acetaldehyde actuallydecreased the clotting time. Of interest, both factorsVII and IX preincubated with acetaldehyde producedstatistically significant results when compared to thecontrol and ethanol. This experiment indicates thatacetaldehyde, in forming an adduct with proteins of theblood coagulation pathway, may induce a conformationalchange of factors VII and IX so as to either increase or decrease the clotting time. Therefore, it ispossible that some of the deranged coagulation inalcohol abusers may be a final net result of theinteraction of acetaldehyde and proteins of thecoagulation pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...