Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 203-213 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; cell cycle behavior ; catabolite repression mutants ; CDC28 expression ; G1 length ; chemostat and batch cultures ; Metabolic Control Analysis ; glycolysis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In glucose-limited continuous cultures, a Crabtree positive yeast such as Saccharomyces cerevisiae displays respiratory metabolism at low dilution rates (D) and respiro-fermentative metabolism at high D. We have studied the onset of ethanol production and cell cycle behavior in glucose-limited chemostat cultures of the wild type S. cerevisiae strain CEN.PK122 (WT) and isogenic mutants, snf1 (cat1) and snf4 (cat3) defective in proteins involved in catabolite derepression and the mutant in glucose repression mig1 (cat4).The triggering of fermentative metabolism was dependent upon catabolite repression properties of yeast and was coincident with a significant decrease of G1 length. WT cells of the strain CEN.PK122 displayed respiratory metabolism up to a D of 0.2 h-1 and exhibited longer G1 lengths than the snf1 and snf4 mutants that started fermenting after a D of 0.1 and 0.15 h-1, respectively. The catabolite derepression mutant snf4 showed a significant decrease in the duration of G1 with respect to the WT. An increase of 300% to 400% in the expression of CDC28 (CDC28-lacZ) with a noticeable shortening in G1 to values lower than ∼150 min, was detected in the transformed wild type CEN.SC13-9B in glucose-limited chemostat cultures. The expression of CDC28-lacZ was analyzed in the wild type and isogenic mutant strains growing at maximal rate on glucose or in the presence of ethanol or glycerol. Two- to three-fold lower expression of the CDC28-lacZ fusion gene was detected in the snf1 or snf4 disruptants with respect to the WT and mig1 strains in the presence of all carbon sources. This effect was further shown to be growth rate-dependent exhibiting apparently, a threshold effect in the expression of the fusion gene with respect to the length of G1, similar to that shown in chemostat cultures.At the onset of fermentation, the control of the glycolytic flux was highly distributed between the uptake, hexokinase, and phosphofructokinase steps. Particularly interesting was the fact that the snf1 mutant exhibited the lowest fluxes of ethanol production, the highest of respiration and correspondingly, the branch to the tricarboxylic acid cycle was significantly rate-controling of glycolysis. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59: 203-213, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 193-208 
    ISSN: 0006-3592
    Keywords: yeast intermediary metabolism ; carbon and phosphorylation fluxes ; amphibolic pathways ; NADH oxidation ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the present work we develop a method for estimating anabolic fluxes when yeast are growing on various carbon substrates (glucose, glycerol, lactate, pyruvate, acetate, or ethanol) in minimal medium. Fluxes through the central amphibolic pathways were calculated from the product of the total required amount of a specified carbon intermediate times the growth rate. The required amount of each carbon intermediate was estimated from the experimentally determined macromolecular composition of cells grown in each carbon source and the monomer composition of macromolecules.Substrates sharing most metabolic pathways such as ethanol and acetate, despite changes in the macromolecular composition, namely carbohydrate content (34% ± 1 and 21% ± 3, respectively), did not show large variations in the overall fluxes through the main amphibolic pathways. For instance, in order to supply anabolic precursors to sustain growth rates in the range of 0.16/h to 0.205/h, similar large fluxes through Acetyl CoA synthase were required by acetate (4.2 mmol/hr g dw) or ethanol (5.2 mmol/h g dw).The Vmax activities of key enzymes of the main amphibolic pathways measured in permeabilized yeast cells allowed to confirm, qualitatively, the operation of those pathways for all substrates and were consistent on most substrates with the estimated fluxes required to sustain growth.When ATP produced from oxidation of the NADH synthesized along with the key intermediary metabolites was taken into account, higher YATPmax values (36 with respect to 24 g dw/mol ATP) were obtained for glucose. The same result was obtained for glycerol, ethanol, and acetate. A yield index (YI) was defined as the ratio of the theoretically estimated substrate flux required to sustain a given growth rate over the experimentally measured flux of substrate consumption. Comparison of Yl between growth on various carbon sources led us to conclude that ethanol (Yl = 0.84), acetate (Yl = 0.77), and lactate (Yl = 0.77) displayed the most efficient use of substrate for biomass production. For the other substrates, the Yl decayed in the following order: pyruvate 〉 glycerol 〉 glucose.An improvement of the quantitative understanding of yeast metabolism, energetics, and physiology is provided by the present analysis. The methodology proposed can be applied to other eukaryotic organisms of known chemical composition. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 197-204 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Thermodynamic and kinetic calculations were performed in a model of mixed substrate metabolism. The model simulates the catabolic breakdown of a first substrate, glucose (S1), in the presence of a second substrate, formate (S2), which acts as an additional source of free energy. The principal results obtained with different relative rates of uptake of S2 allow to predict and interpret the following experimental observations: (1) the existence of increased ATP yields by mixed substrate utilization with a maximum ATP yield and optimum input (or molar) ratio for both substrates; (2) a greater assimilation of S1 which may be interpreted as a decreasing fraction of energy required for assimilation; (3) a decrease in ATP yields due to increasing energy demand for transport; (4) an increased assimilation of the carbon source (S1) as a function of increasing inputs of the additional energy source; (5) thermodynamic efficiency (η) defined as the ratio between the output power of ATP synthesis and the input catabolic power, increases for S2/S1 ratios ranging between 0.08 and 2 while for ratios higher than two a slight decrease of η was noticed; and (6) the observed maximum in ATP yield for optimum molar ratio of the two substrates corresponds to high η predicting that higher biomass yields may be obtained through a variable, high, η by chanelling fluxes through catabolic pathways with different ATP yields. During oscillatory behavior, maxima in fluxes were almost coincident with maxima in forces. Thus, the pattern of dissipation was not so advantageous as in the single substrate model under starvation conditions.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...