Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (3)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 30 (1987), S. 498-504 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m3-day with an effluent phenol concentration less than 1 g/m3 was achieved, signifying the high treatment efficiency of using a DTFB.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 31 (1988), S. 24-34 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Concentration multiplicity in a two-phase or three-phase draft tube fluidized-bed bioreactor containing biofloc particles is studied. The kinetics of biological reactions considered involve two limiting substrates. The necessary and sufficient conditions for concentration multiplicity in both the biofilm and bioreactor are examined in terms of effectiveness factor, inlet and bulk concentration of substrates, and liquid flow rate. Hysteresis behavior in both the biofilm and bioreactor and multiplicity of concentration profiles in the biofilm are also discussed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 1029-1038 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biological phenol degradation was performed experimentally in a gas-liquid-solid fluidized bed bioreactor using a mixed culture of living cells immobilized on activated carbon particles. A comprehensive model was developed for this system utilizing double-substrate limiting kinetics. The model was used to simulate the effects of changing inlet phenol concentration and biofilm thickness on the rate of biodegradation for two different types of support particles. The model shows that gas-liquid mass transfer is the limiting step in the rate of phenol biodegradation when the phenol loading is high.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...