Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (4)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 16 (1974), S. 119-134 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: L-Asparaginase has been attached by chemical means to the inner surface of nylon tubing. An experimental study has been carried out of the flow kinetics for such a system, asparagine solutions at various concentrations being passed through two lengths of tubing at various flow rates. Measurements were made of the concentration of the product ammonia at the tube exit, and of the rate of formation of ammonia, under the various conditions. Apparent Michaelis constants, Km(app), were some three orders of magnitude higher than the Km for the enzyme in free solution (∼13 × 10-6JM). The results were analyzed with respect to the theoretical treatment described in the preceding paper (Kobayashi and Laidler), three different methods being employed. It is concluded that at lower substrate concentrations and flow rates the reactions are largely diffusion-controlled, the enhanced Km(app) values being largely if not entirely due to the diffusion control; ionic strength studies showed electrostatic repulsion effects to be unimportant. At high concentrations and high flow rates (when the diffusion layer is of negligible thickness) the diffusional effects are minimized, and Km(app) approaches the true Km value for the immobilized enzyme.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 32 (1988), S. 213-219 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lactate dehydrogenase (LDH) was covalently attached to an impervious nylon surface by an improved technique. The procedure allowed the kinetics of the rotating enzyme disk reactor to be successfully explored. This enzyme-disk configuration has potential applications in assays for lactic acid or pyruvic acid in fluids of biological importance (e.g., urine). In order to evaluate and understand the physics and chemistry underlying the kinetics of the heterogeneous biocatalyst, a mathematical model based on the von Karman-Levich theories of rotating electrodes, was developed. It applied well to LDH attached to a disk, under variable NADH concentrations and fixed pyruvic acid. The new theory, leads to the conclusion that the apparent Michaelis constant Km(app), varies linearly with f-1/2, where f is the speed of rotation of the disk. Extrapolation of f-1/2 to zero gives the Michaelis-Menten constant, Km, corresponding to the diffusion-free behavior. With immobilized LDH, the diffusion-free Km for NADH obtained at 25°C, in phosphate buffer (pH 7.5) using the extrapolation method was 84 μM. This value was in good agreement with the previously published value of 87 μM, obtained with LDH attached to the inner surface of a nylon tubing. However, when compared to the Km for a free enzyme system, the 84 μM was about nine times larger, indicating an inherent reduction in the activity of the bound LDH. Since, at extrapolated infinite rotation speeds, diffusion effects were assumed eliminated, the drop in the activity was thought to be due to sterric hinderances imposed on the substrate NADH as a result of having LDH bound to another polymer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 16 (1974), S. 99-118 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A theoretical treatment is given of the kinetics of reactions catalyzed by enzymes attached to the inner surface of a tube, through which the substrate solution passes. A utilization factor, the ratio of the actual reaction rate to that in the absence of diffusional effects, is defined. A numerical procedure is proposed and numerical and approximate solutions for the utilization factor are given for five kinetic conditions: (a) Michaelis-Menten behavior, (b) substrate inhibition, (c) product inhibition (competitive), (d) product, inhibition (non-competitive), and (e) product inhibition (anticompetitive). When the enzyme chemically attached to a tube obeys a Michaelis-Menten relationship, criteria for insignificant and significant diffusional effects are proposed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 16 (1974), S. 77-97 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A theoretical treatment has been worked out for the kinetics of solid-supported enzyme systems, with diffusive and electrostatic effects taken into account. A utilization factor, defined as the ratio of the actual reaction rate to the rate of substrate consumption in the outer solution, is defined, and equations to evaluate the utilization factor are given for five kinetic conditions: (a) Michaelis-Menten behavior, (b) substrate inhibition, (c) product inhibition (competitive), (d) product inhibition (noncompetitive), and (e) product inhibition (anticompetitive). When the solid-supported enzymes obey a Michaelis-Menten relationship, an equation for the apparent Michaelis constant is given and a criterion for insignificant diffusion effects is shown. A substrate-inhibited enzyme reaction may display multiple steady-state behavior, and a criterion for uniqueness is presented. In the case of product-inhibited enzyme reactions, the utilization factor is always less than that which corresponds to a Michaelis-Menten relationship. Equations to evaluate the apparent Michaelis and inhibition constants are given.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...