Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-3585
    Keywords: TIM ; protein-ligand complexes ; water involvement in binding ; drug design ; active site structure ; sleeping sickness ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 Å), a transition state analogue (3-phosphonopropionic acid to 2.6 Å), and a compound structurally related to both (3-phosphoglycerate to 2.2 Å). The active site structures of these complexes were compared with each other, and with two previously determined structures of triosephosphate isomerase either free from inhibitor or complexed with sulfate. The comparison reveals three conformations available to the “flexible loop” near the active site of triosephosphate isomerase: open (no ligand), almost closed (sulfate), and fully closed (phosphate/phosphonate complexes). Also seen to be sensitive to the nature of the active site ligand is the catalytic residue Glu-167. The side chain of this residue occupies one of two discrete conformations in each of the structures so far observed. A “swung out” conformation unsuitable for catalysis is observed when sulfate, 3-phosphoglycerate, or no ligand is bound, while a “swung in” conformation ideal for catalysis is observed in the complexes with glycerol-3-phosphate or 3-phosphonopropionate. The water structure of the active site is different in all five structures. The results are discussed with respect to the triosephosphate isomerase structure function relationship, and with respect to an on-going drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 489-492 
    ISSN: 0006-3592
    Keywords: reverse micelles ; back-extraction ; silica ; proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In order to use reverse micellar solutions successfully for the separation of proteins, good methods are needed to recover the biomolecules into an aqueous environment after solubilization into organic micellar media. Usually the recovery is accomplished by equilibrating the protein-loaded reverse micellar solution with a water phase containing an appropriate salt (back-transfer). In this article we describe an alternative “back extraction” procedure which is based on the addition of silica to the protein-containing reverse micellar solution. In this way, the water is stripped from the reverse micellar solution. [i.e., bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/isooctane/water] and the proteins adsorb to the silica particles. The adsorption process is shown to be practically quantitative. The subsequent recovery of the proteins form the silica into an aqueous solution turns out to be most efficient at alkaline pH (pH 8); 60-80 of the total protein (α-chymotrypsin or trypsin) could be recovered. The specific enzyme activity at the end of the whole cycle can be as high as 80-100%. The procedure is applied also for the back extraction from micellar solutions in which, instead of AOT, a biocompatible surfactant such as a synthetic short-chain lecithin was used. It is shown that the recovery of a α-chymotrypsin and trypsin is also achievable under these conditions in quite good yield and under good maintenance of the enzyme's catalytic activity. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0887-3585
    Keywords: TIM ; molecular dynamics refinement ; loop movement ; conformational change ; crystal contacts ; sleeping sickness ; suramine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Triosephosphate isomerase has an important loop near the active site which can exist in a “closed” and in an “open” conformation. Here we describe the structural properties of this “flexible” loop observed in two different structures of trypanosomal triosephosphate isomerase. Trypanosomal triosephosphate isomerase, crystallized in the presence of 2.4 M ammonium sulfate, packs as an asymmetric dimer of 54,000 Da in the crystallographic asymmetric unit. Due to different crystal contacts, peptide 167-180 (the flexible loop of subunit-1) is an open conformation, whereas in subunit-2, this peptide (residues 467-480) is in a closed conformation. In the closed conformation, a hydrogen bond exists between the tip of the loop and a well-defined sulfate ion which is bound to the active site of subunit-2. Such an active site sulfate is not present in subunit-1 due to crystal contacts. When the native (2.4 M ammonium sulfate) crystals are transferred to a sulfate-free mother liquor, the flexible loop of subunit-2 adopts the open conformation. From a closed starting model, this open conformation was discovered through molecular dynamics refinement without manual intervention, despite involving Cα shifts of up to 7 Å. The tip of the loop, residues 472, 473, 474, and 475, moves as a rigid body. Our analysis shows that in this crystal form the flexible loop of subunit-2 faces a solvent channel. Therefore the open and the closed conformations of this flexible loop are virtually unaffected by crystal contacts. The actual observed conformation depends only on the absence or presence of a suitable ligand in the active site.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0887-3585
    Keywords: triosephosphate isomerase ; TIM ; X-ray crystallography ; binding studies ; crystal packing ; conformational change ; reaction mechanism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structure of trypanosomal triosephosphate isomerase (TIM)has been solved at a resolution of 2.1Å in a new crystal form grown at pH 8.8 from PEG6000. In this new crystal form (space group C2, cell dimensions 94.8 Å, 48.3 Å, 131.0 Å, 90.0°, 100.3°, 90.0°), TIM is present in a ligand-free state. The asymmetric unit consists of two TIM subunits. Each of these subunits is part of a dimer which is sitting on a crystallographic twofold axis, such that the crystal packing is formed from two TIM dimers in two distinct environments. The two constituent monomers of a given dimer are, therefore, crystallographically equivalent. In the ligand-free state of TIM in this crystal form, the two types of dimer are very similar in structure, with the flexible loops in the “Open” conformation. For one dimer (termed molecule-1), the flexible loop (loop-6) is involved in crystal contacts. Crystals of this type have been used in soaking experiments with 0.4 M ammonium sulphate (studied at 2.4 Å resolution), and with 40 μM phosphoglycolohydroxamate (studied at 2.5 Å resolution). It is found that transfer to 0.4 M ammonuum sulphate (equal to 80 times the Ki of sulphate for TIM), gives rise to significant sulphate binding at the active site of one dimer (termed molecule-2), and less significant binding at the active site of the other. In neither dimer does sulphate induce a “closed” conformation. In a mother liquor containing 40 μM phosphoglycolohydroxamate (equal to 10 times the Ki of phosphoglycolohydroxamate for TIM), an inhibitor molecule binds at the active site of only that dimer of which the flexible loop is free from crystal contacts (molecule-2). In this dimer, it induces a closed conformation. These three structures are compared and discussed with respect to the mode of binding of ligand in the active site as well as with respect to the conformational changes resulting from ligand binding. © 1993 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 1140-1146 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method for the simultaneous extraction of oil and proteins from vegetable meals is presented. The method uses hydrocarbon reverse micelles, so that the oil is extracted directly into the hydrocarbon phase and the proteins are solubilized in the water pools of the reverse micelles. The surfactant used is bis (2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane at variable w0 values (w0 measures the amount of water in the system, where w0 = [H2O]/[AOT]). A comparison with the usual extraction methods is offered. It is shown that with the micelle system the extraction of oil is as large as with the usual methods, and it is independent of w0. However the amount and type of proteins extracted depends strongly on w0. At w0 values below 6, no protein and only low molecular weight compounds (i.e. chlorogenic acid) are extracted, at larger water content (i.e. by increasing the dimension of the micelle water pool), also proteins are solubilized in a significant amount and with a molecular weight which increases by increasing W0. The protein solubilized in the microemulsion system can be recovered into an aqueous phase with a back-transfer step.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...