Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0887-3585
    Keywords: amino acid-derived cofactor ; crystal structure ; methylamine dehydrogenase ; molecular replacement ; oxidoreductase ; Paracoccus denitrificans ; pyrroloquinoline quinone ; quinoprotein ; tryptophan tryptophylquinone ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional structure of the quinoprotein methylamine dehydrogenase from Paracoccus denitrificans (PD-MADH) has been determined at 2.8 Å resolution by the molecular replacement method combined with map averaging procedures, using data collected from an area detector. The structure of methylamine dehydrogenase from Thio-bacillus versutus, which contains an “X-ray” sequence, was used as the starting search model. MADH consists of 2 heavy (H) and 2 light (L) subunits related by a molecular 2-fold axis. The H subunit is folded into seven four-stranded β-segments, forming a disk-shaped structure, arranged with pseudo-7-fold symmetry. A 31-residue elongated tail exists at the N-terminus of the H subunit in MADH from T. versutus but is partially digested in this crystal form of MADH from P. denitrificans, leaving the H subunit about 18 residues shorter. Each L subunit contains 127 residues arranged into 10 β-strands connected by turns. The active site of the enzyme is located in the L subunit and is accessible via a hydrophobic channel between the H and L subunits. The redox cofactor of MADH, tryptophan tryptophylquinone is highly unusual. It is formed from two co-valently linked tryptophan side chains at positions 57 and 107 of the L subunit, one of which contains an orthoquinone. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 16 (1993), S. 408-422 
    ISSN: 0887-3585
    Keywords: heme ; flavin ; electron transfer proteins ; crystal packing ; molecular modeling ; energy minimization ; electrostatic interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Flavocytochrome b2 and cytochrome c are physiological electron transfer partners in yeast mitochondria. The formation of a stable complex between them has been demonstrated both in solution and in the crystalline state. On the basis of the three-dimensional structures, using molecular modeling and energy minimization, we have generated a hypothetical model for the interaction of these redox partners in the crystal lattice. General criteria such as good charge and surface complementarity, plausible orientation, and separation distance of the prosthetic groups, as well as more specific criteria such as the stoichiometry determined in the crystal, and the involvement of both domains and of more than one subunit of flavocytochrome b2 led us to discriminate between several possible interaction sites. In the hypothetical model we present, four cytochrome c molecules interact with a tetramer of flavocytochrome b2. The b2 and c hemes are coplanar, with an edge-to-edge distance of 14 Å. the contact surface area is ca. 800 Å2. Several electrostatic interactions involving the flavin and the heme domains of flavocytochrome b2 stabilize the binding of cytochrome c. © 1993 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...