Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 17 (1975), S. 279-283 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 17 (1975), S. 1065-1081 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dynamics of a system of two microbial populations having complementary metabolism are investigated by means of simple mathematical models of growth. Complementary metabolism as used here means that each population produces a substance - not present in the initial or feed medium - required by the other for growth. The simple models indicate that (1) something other than lack of the substrate or growth factor produced by its partner must limit the growth of at least one population and (2) the coexistence steady state of such populations in continuous culture is not stable with respect to large perturbations, though it is stable with respect to a wide range of perturbations.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 1901-1904 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 183-186 
    ISSN: 0006-3592
    Keywords: Gluconobacter oxydans ; 5-ketogluconic acid ; tartatic acid ; vanadate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dependence of tartaric acid production by Gluconobacter oxydans ssp. oxydans ATCC 19357 and G. oxydans ssp. suboxydans ATCC 621 on vanadate was investigated. It was found with both organisms that trataric acid could only be produced in a medium containing vanadate (NH4VO3). A proposed intermediate of the tartaric acid metabolism in G. oxydans, 5-ketogluconic acid, was tested on its reactivity in the presence of the oxidizing catalyst vanadate. It could be shown that 5-ketogluconic acid and the catalyst vanadate, but not the activity of G. oxydans, were responsible for the formation of tartaric acid. G. oxydans was not able to produce tartaric acid by itself. The stereochemical identity of the formed tartaric acid could be identified as the L-(+)-type. Oxalic acid was formed from 5-ketogluconic acid with vanadate in the absence and in the presence of G. oxydans. The ratio of oxalic acid to tartaric acid was 1:1.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 219-228 
    ISSN: 0006-3592
    Keywords: formate conversion ; mass spectrometer ; anaerobic conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dynamics of the anaerobic conversion of formate in a microbial mixed culture taken from an anaerobic fluidized bed reactor was studied using a new stirred micro reactor equipped with a membrane mass spectrometer. The microreactor with a toroidally shaped bottom and pitched blade turbine and a cylindrical flow guide was thermostated and additionally equipped with a pH electrode and pH control. During fed-batch experiments using formate, the dissolved gases (methane, hydrogen, and carbon dioxide), as well as the acid consumption rates for pH control were monitored continuously. Initially and at the end of each experiment, organic acids were analyzed using ion chromatography (IC). It was found that about 50% of the formate was converted to methane via hydrogen and carbon dioxide, 40% gave methane either directly or via acetate. This was calculated from experiments using H13CO3- pulses and measurement of 12CH4 and 13CH4 production rates. About 10% of the formate was converted to lactate, acetate, and propionate, thereby increasing the measured CO2/CH4 production ratio. The nondissociated formic acid was shown to be rate determining. From the relatively high Ks value of 2.5 mmol m-3, it was concluded that formate cannot play an important role in electron transfer. During dynamic feeding of formate, hydrogen concentration always increased to a maximum before decreasing again. This peak was found to be very discriminative during modeling. From the various models set up, only those with two-stage degradation and double Monod kinetics, both for CO2 and hydrogen, were able to describe the experimental data adequately. Additional discrimination was possible with the IC measurement of organic acids. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 127-135 
    ISSN: 0006-3592
    Keywords: membrane mass spectrometer ; kinetic measurements ; anaerobic biofilm ; acetate ; inhibition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A small, stirred, 14.4-mL tank reactor was designed to serve as a measurement cell for short-term investigation of microbial kinetics. A mass spectrometer membrane probe allowed the measurement of the dissolved gases of hydrogen, methane, oxygen, and carbon dioxide. pH was measured by an electrode and controlled by addition of acid or alkali. The highly sensitive measurement of gases with low solubility allowed rapid measurements at very low conversion. In kinetic experiments, a stepwise increase of substrate concentration (method A) and continuous feed of substrate (method B) were used, allowing quick estimation of substrate kinetics. Acetate conversion in mixed culture biofilms from a fluidized bed reactor was investigated. Substrate inhibition was found to be negligible in the concentration range studied. Experiments at various pH values showed that the undissociated acid form was the kinetic determinant. Kinetic parameters for Haldane kinetics of protons were KSH = 1.3 × 10-5 mol m-3 and KIH = 8.1 × 10-3 mol m-3. With free acid (HAc) as the rate determining species, the kinetic parameters for method A were KSHAc = 0.005 mol m-3 and KIHAc = 100 mol m-3 and for method B were KSHAc = 0.2 mol m-3 and KIHAc = 50 mol m-3. The maximum biomass activity occurred at around pH 6.5. Acetate was exclusively converted to methane and CO2 at pH 〉 6. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 127-135, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 59 (1998), S. 189-202 
    ISSN: 0006-3592
    Keywords: artificial neural network (ANN) ; microfiltration ; cell harvesting ; membrane fouling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microfiltration is an important unit operation in downstream processing. However, due to the influence of membrane fouling, prediction of the filtration performance for biological suspensions is difficult. This paper describes a modeling approach that allows a comprehensive description of filtration performance. On the basis of experimental data and linguistic information, a specific artificial neural network was developed that predicts the process behavior within a certain range of parameters. This approach allows us to analyze influences of fermentation on filtration. By using extensive simulations, the interactions of 17 parameters were examined and the fouling causes determined. The model was developed for cell harvesting of Escherichia coli through a shear-enhanced module. The method can be applied to any cross-flow filtration process. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:189-202, 1998.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 353-358 
    ISSN: 0006-3592
    Keywords: Bagasse hemicellulose hydrolysate ; chemostat ; Candida blankii ; D-xylose ; single cell protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Candida blankii yeast isolate was grown in sugar cane bagasse hemicellulose hydrolysate at 38°C in carbon-limited chemostat culture. The pretreatment of the acid hydrolysate prior to microbial cultivation consisted of partial neutralization with ammonia and sodium hydroxide, plus the addition of phosphorus, which was the only other growth-limiting nutrient apart from nitrogen. The cell yield coefficient on nitrogen was 16.78. The critical dilution rate was higher (0.35 h-1) in diluted hydrolysate than in undiluted hydrolysate (0.21 h-1). In undiluted hydrolysate at a dilution rate of 0.1 h-1 and pH 4, where aseptic procedures proved unnecessary, the cell and protein yield coefficients were 0.53 and 0.26, respectively, and no residual carbon substrates (D-xylose, L-arabinose, D-glucose, and acetic acid) were detected. The cell yield on oxygen increased linearly as a function of dilution rate. The cellular content of protein, carbohydrate, and RNA also increased with an increase in dilution rate, whereas the DNA content decreased slightly. C. blankii has considerable potential for the production of single cell protein from hemicellulose hydrolysate, because of its ability to utilize all of the major carbon substrates in the hydrolysate at a low pH and at a relatively high temperature with a high protein yield. © 1992 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 760-767 
    ISSN: 0006-3592
    Keywords: (R)-1-(1-naphthyl)ethylamine ; (R)-1-aminoindan ; subtilisin ; organic solvent ; stereoselective aminolysis ; immobilized enzyme ; continuous process ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An enzymatic process has been developed for the continuous production of the pharmaceutically important intermediate (R)-1-aminoindan and of the chiral resolving agent (R)-1-(1-naphthyl)ethylamine. The process consists of the subtilisin catalyzed stereoselective aminolysis of the racemic primary amine with an active ester in organic solvent. The competing nonenzymatic reaction has been suppressed by appropriate choice of solvent and reactant's concentration and by minimizing the time of contact between the amine and the active ester. Subtilisin was immobilized on glass beads and the reaction carried out in a continuous-flow column bioreactor. By using a 450-mL column bioreactor containing 5.7 g of subtilisin immobilized on 570 g of glass beads, 1.6 kg of racemic 1-(1-naphthyl)ethylamine was resolved after 320 h of continuous operation with only a slight loss of the enzymatic activity. During the whole process, the optical purity of the chiral amine eluting from the column was higher than 90%. A facile procedure was developed for separating the unreacted (R)-amine from the (S)-amide and for the recycling of the solvent 3-methyl-3-pentanol and the active ester 2,2,2-trifluoroethyl butyrate. © 1992 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0006-3592
    Keywords: protein stabilization ; urokinase ; denaturation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Stabilization of proteins through proper formulation is an important challenge for the pharmaceutical industry. Two approaches for stabilization of proteins in solution are discussed. First, work describing the effect of additives on the thermally induced denaturation and aggregation of low molecular weight urokinase is presented. The effects of these additives can be explained by preferential exclusion of the solute from the protein, leading to increased thermal stability with respect to denaturation. Diminished denaturation leads to reduced levels of aggregation. The second approach involves stoichiometric replacement of polar counter ions (e.g., chloride, acetate, etc.) with anionic detergents, in a process termed hydrophobic ion pairing (HIP). The HIP complexes of proteins have increased solubility in organic solvents. In these organic solvents, where the water content is limited, the thermal denautration temperatures greatly exceed those observed in aqueous solution. In addition, it is possible to use HIP to selectively precipitate basic proteins from formulations that contain large amounts of stabilizers, such as human serum albumin (HSA), with a selectivity greater than 2000-fold. This has been demonstrated for various mixtures of HSA and interleukin-4. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...