Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 88-92 
    ISSN: 0006-3592
    Keywords: cell cycle ; hydrodynamic forces ; apoptosis ; cell culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Exposure of animal cells to intense hydrodynamic forces exerted in turbulent capillary flow, and by controiled agitation and aeration, resulted in preferential destruction of S and G2 cells and the extent of destruction of these cells was dependent upon the intensity of the action. The loss of these cells was possibly due to their larger size. However, the appearance of large numbers of membrane-bound vesicular structures similar to apoptotic bodies as well as cells with low DNA stainability (in a sub-G1 peak) suggested that the action of adverse hydrodynamic forces on these large cells may at least in part be to induce an apoptotic response. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 720-726 
    ISSN: 0006-3592
    Keywords: cell death ; apoptosis ; hybridoma cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The incidence of apoptotic and necrotic cell death was compared in CHO, SF9 insect cells and murine plasmacytoma (J558L) and hybridoma (TB/C3) cells during in vitro cultivation in batch cultures. Acridine orange staining and fluorescence microscopy enabled the visualization of a classic morphological feature of apoptotic cell, the presence of condensed and/or fragmented chromatin. DNA gel electrophoresis was employed to show an additional characteristic of the process, the endonuclease-mediated fragmentation of DNA into multiples of 180 base pairs. The levels of apoptosis at the end of batch cultures of plasmacytoma and hybridoma cell lines were found to be 60% and 90% of total dead cells, respectively. However, employing the above-mentioned techniques, the biochemical and morphological features of apoptosis were not found in CHO and SF9 insect cells. Some factors affecting the induction of apoptosis during the batch culture of the hybridoma and plasmacytoma cell lines were identified. The most effective inducer was found to be glutamine limitation, followed by (in order of importance) serum limitation, glucose limitation, and ammonia toxicity. Blockage of the cell cycle of the plasmacytoma and hybridoma cells using thymidine resulted in the induction of apoptosis. This has important implications for the development of cell culture processes that minimize cell division and thereby increase specific productivity. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3592
    Keywords: apoptosis ; necrosis ; bcl-2 ; amino acids ; cell culture ; cell death ; hybridoma ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The transfection of murine hybridomas with the apoptosis suppressor gene bcl-2 has been reported to result in the extension of batch culture duration, leading to significant improvements in culture productivity. In the present study, the effect of deprivation, individually, of each amino acid found in culture medium was examined to characterize the chemical environment of the culture in terms of its propensity to induce apoptosis. When cells were deprived of each amino acid, individually for 48 h, the majority of cell deaths in each case occurred by apoptosis, with essential amino acids being clearly most effective. For nearly all the amino acids, the viability of the bcl-2 cell line cultures was greater than 70% after 48 h, representing a substantial improvement in viability over control cell line cultures. Time course studies revealed that the induction of death could be divided into two phases. Initially, following the deprivation of a single essential amino acid, there was a period of time during which all the control cell line cultures retained high viability. The duration of this phase varied from 15 h in the case of lysine deprivation, through to 40 h in the case methionine deprivation. In the second phase of deprivation, the cultures exhibited an abrupt and rapid collapse in viability. The time taken for the viability to fall to 50% was similar for each amino acid. In every case, the duration of both phases of the bcl-2 cultures was considerably extended. Specific utilization rates were increased during the control cultures relative to the bcl-2 cultures for both the growth phase (ranging between 2% and 57% higher than the bcl-2 cultures) and the death phase (ranging between 172% to 1900% higher than the bcl-2 culture). © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 59:90-98, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 463-472 
    ISSN: 0006-3592
    Keywords: apoptosis ; animal cell death ; hybridoma cells ; agitation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The question is addressed as to whether cells which are subject to high-energy dissipation rates in agitated bioreactors show an apoptotic response. Murine hybridoma cells in batch culture were agitated in bench-scale (1-L) bioreactors without gas sparging. At an energy dissipation rate of 1.5 W m-3 there was no apparent damage. At 320 W m-3 cell viability declined, and increasing proportions of the dead cells displayed the morphological features of apoptosis, but necrosis also remained as a significant mechanism of death. When cells were subjected to the intensive energy dissipation rate of 1870 W m-3 in a bioreactor without gas headspace, the cell number dropped by 50% within 2 h and a subpopulation of smaller-sized cells emerged. This excluded trypan blue but showed some apoptotic characteristics such as reduced and condensed DNA content and low F-actin content. The incidence of apoptotic activity was further demonstrated by the appearance of numerous apoptotic bodies. Analysis of the cell cycles of both small and normal size populations indicated that greater proportions of S and G2 cells had become apoptotic and there was evidence of preferential survival of G1 cells. It is suggested that two mechanisms of cell death are apparent in hydrodynamically stressful situations, but their relative expression depends on the energy dissipation rate. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...