Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Earthworm ; Enchytraeid ; Tillage ; Organic matter ; Biocide ; Agroecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Earthworm and enchytraeid densities and biomass were sampled over an 18-month period in conventional and no-tillage agroecosystems. Overall, earthworm densities and biomass in the no-till system were 70% greater than under conventional tilling, and enchytraeid densities and biomass in the no-till system were 50%–60% greater. To assess the role of annelids in the breakdown of soil organic matter, carbofuran was applied to field enclosures and target (earthworm and enchytraeid biomass, standing stocks of organic matter) and non-target effects (bacteria, fungi, protozoa, nematode and microarthropod densities, litter decay rates, plant biomass) were determined in two 10-month studies. In the winter-fall study, carbofuran reduced the annelid biomass, and total soil organic matter standing stocks were 47% greater under no-till with carbofuran compared to control enclosures. Twelve percent of the difference could have been due to non-target effects of carbofuran, as determined from litterbag decay rates. In the summer-spring study, carbofuran again significantly reduced the annelid biomass, and treated pens in the no-till area had significantly greater standing stocks of fine organic matter (43%–45%). Although the densities of bacteria and nematodes were reduced in carbofuran-treated litterbags under a no-till system, the rates of decay were not reduced and estimates of the amount of organic matter processed could not be adjusted for non-target effects. A 76% difference in the standing stock of coarse organic matter between control and carbofuran-treated pens in the conventional-till system indicated further non-target effects. We concluded that our estimates of the amount of organic matter processed by annelids in no-till and conventionally tilled agroecosystems represented a maximum potential because of the confounding non-target effects of carbofuran.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...