Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • Bioregions  (1)
  • Engineering General  (1)
  • 1
    ISSN: 1573-5052
    Keywords: Beta diversity ; Bioregions ; Endemism ; Hotspots ; Plant Diversity ; Reserve design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Succulent Karoo biome is home to the world's richest succulent flora. It has approximately 1954 endemic plant species, and is the only semi-arid region to qualify as a hotspot of global significance. Despite its importance, only 2% of the biome is currently protected. Based on its flora, the biome can be divided into 12 bioregions, reflecting its high compositional turnover in relation to environmental and geographical gradients. Only three of these bioregions (the Gariep Centre, the Namaqualand Rocky Hills and the Tanqua Karoo) contain National Parks, and three contain large (over 10 000 ha) provincial reserves (the Gariep Centre, the Namaqualand Rocky Hills and the Little Karoo). The current reserve system does little to conserve biodiversity, with only one reserve significantly conserving Red Data Book (RDB) plant diversity. Using a RDB plant species database of 3874 records at a quarter degree scale (QDS = 15′×15′), we used hotspot analyses and iterative reserve selection algorithms to identify possible locations for future reserves. The hotspot analysis and iterative analyses yielded similar results for the top 11 QDS, mainly due to very high local endemism. Also because of the local endemism and the high species turnover within the biome, the real-world iterative algorithm (starting with the seven already reserved QDS) selected a very large total number of QDS (59% of the total in the biome) to conserve all RDB species. As a possible alternative to conservation planning based on QDS, we also assessed priorities at the scale of bioregions, but showed that representation at this geographic level misses important areas defined at a finer scale. We suggest that if the objective is to maximise the retention of RDB species in the landscape (to pre-empt extinction by scheduling the allocation of limited conservation resources), at least the top 5% of QDS (n=11) selected by the iterative procedure, and identified as the core conservation sequence by analysis of endemicity and threat, should be given priority for reservation. Less extensive and, in some cases, less formal conservation action can be applied to QDS later in the sequence, based on species-specific monitoring and action plans. Of the 11 core areas, four fall in a node centred on the Vanrhynsdorp Centre, two fall in a node centred on the Kamiesberg, and the remaining five are isolated. With existing reserves, the core areas capture 50% of the RDB flora in 8% of the biome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1475-1506 
    ISSN: 0029-5981
    Keywords: finite elements ; incompressible Navier-Stokes ; upwinding schemes ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This paper examines a new Galerkin method with scaled bubble functions which replicates the exact artificial diffusion methods in the case of 1-D scalar advection-diffusion and that leads to non-oscillatory solutions as the streamline upwinding algorithms for 2-D scalar advection-diffusion and incompressible Navier-Stokes. This method retains the satisfaction of the Babuska-Brezzi condition and, thus, leads to optimal performance in the incompressible limit. This method, when, combined with the recently proposed linear unconditionally stable algorithms of Simo and Armero (1993), yields a method for solution of the incompressible Navier-Stokes equations ideal for either diffusive or advection-dominated flows. Examples from scalar advection-diffusion and the solution of the incompressible Navier-Stokes equations are presented.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...