Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blood flow  (1)
  • Comparative genomic hybridization  (1)
  • 1
    ISSN: 1432-1440
    Keywords: Key words Fluorescence in situ hybridization ; Comparative genomic hybridization ; Spectral karyotyping ; Chromosome aberrations ; Tumor progression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Fluorescence in situ hybridization techniques allow the visualization and localization of DNA target sequences on the chromosomal and cellular level and have evolved as exceedingly valuable tools in basic chromosome research and cytogenetic diagnostics. Recent advances in molecular cytogenetic approaches, namely comparative genomic hybridization and spectral karyotyping, now allow tumor genomes to be surveyed for chromosomal aberrations in a single experiment and permit identification of tumor-specific chromosomal aberrations with unprecedented accuracy. Comparative genomic hybridization utilizes the hybridization of differentially labeled tumor and reference DNA to generate a map of DNA copy number changes in tumor genomes. Comparative genomic hybridization is an ideal tool for analyzing chromosomal imbalances in archived tumor material and for examining possible correlations between these findings and tumor phenotypes. Spectral karyotyping is based on the simultaneous hybridization of differentially labeled chromosome painting probes (24 in human), followed by spectral imaging that allows the unique display of all human (and other species) chromosomes in different colors. Spectral karyotyping greatly facilitates the characterization of numerical and structural chromosomal aberrations, therefore improving karyotype analysis considerably. We review these new molecular cytogenetic concepts, describe applications of comparative genomic hybridization and spectral karyotyping for the visualization of chromosomal aberrations as they relate to human malignancies and animal models thereof, and provide evidence that fluorescence in situ hybridization has developed as a robust and reliable technique which justifies its translation to cytogenetic diagnostics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-3146
    Keywords: Key Words Spinal cord compression ; Autoradiography ; Blood flow ; ATP ; Glucose ; Lactate ; Bioluminescence ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Many data are available concerning spinal cord blood flow (SCBF) and metabolism on various models and timing after spinal cord injury, however, detailed information on their exact relationship in the same injury model is lacking. This relationship is a crucial factor in the understanding of the pathophysiology of spinal cord trauma. Rats were subjected to lumbar laminectomy or lumbar spinal cord compression trauma. 3 hours later, changes in SCBF were evaluated autoradiographically and changes in ATP, glucose and lactate levels were analyzed using substrate-specific bioluminescence techniques. Measurements were performed at the lesion site (segment L4), adjacent segments (L3 and L5) and at remote thoracic segments (Th8 to Th9). Laminectomy alone did not change SCBF, both in thoracic and lumbar segments. In contrast, ATP levels were significantly reduced and lactate levels were increased at the lesion site and in adjacent lumbar segments at 3 hours after laminectomy, whereas glucose levels were not significantly changed. In animal subjected to additional compression trauma, SCBF was significantly reduced in segments L3, L4 and L5 paralleled by a significant ATP reduction and lactate increase. Glucose levels did not differ significantly from controls 3 hours after compression injury. This metabolic profile was also reflected in the remote thoracic segments. In contrast, SCBF was not reduced in thoracic segments of traumatized animals. The observation that ATP was already significantly reduced and lactate increased in laminectomized segments and in remote thoracic regions after trauma signals that metabolic changes are sensitive indicators to spinal stress. The fact that posttraumatic metabolic profile differs from the pattern of hemodynamic and metabolic changes induced by ischemia, suggests posttraumatic mediators may be involved in the different regulation of the energy producing machinery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...