Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: aluminium toxicity ; Arachis hypogaea L. ; Bradyrhizobium ; calcium ; magnesium ; solution culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract While considerable information has been presented recently on the alleviating effects of calcium (Ca) on aluminium (Al) toxicity, the interaction between Ca and Al on nodulation and N2-fixation of legumes is little understood. A 28 d solution culture experiment using groundnut (Arachis hypogaea L.) cv. Matjam was conducted to evaluate the effects of four Ca concentrations and four Al levels on nodule development, N2-fixation and plant growth. The Ca concentrations were maintained at 500, 1000, 2500 or 5000 μM, and the sum of activities of monomeric Al species (ΣaAlmono) were 0, 15, 30 and 60 μM. With ΣaAlmono≥30 μM in solution, the time to appearance of the first nodule increased, and, with 60 μM ΣaAlmono in solution, plants remained chlorotic throughout the experiment. Activities≥30 μM reduced nodule number and nodule dry mass per plant, particularly with high (5000 μM) Ca in solution. Also, plant top growth was decreased at ΣaAlmono≥30 μM; the effect only being alleviated by 1000 μM Ca at 30 μM ΣaAlmono. The Ca concentration in the youngest expanded leaf (YEL) increased with increased Ca concentration in solution, but was little affected by Al treatment. Nitrogen concentrations mirrored treatment effects on nodule number and nodule dry mass; Al in solution decreased the N concentration particularly with 5000 μM Ca in solution. Furthermore, increased Ca and Al in solution decreased the Mg concentration in the YEL. This suggested that the absence of any alleviating effect of Ca and Al toxicity (indeed the opposite effect was often observed) resulted from interference in Mg nutrition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 159 (1994), S. 265-276 
    ISSN: 1573-5036
    Keywords: aluminum toxicity ; aluminium toxicity ; Arachis hypogaea L. ; Bradyrhizobium ; solution culture ; nodulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of low activities of the monomeric Al species, Al3+, Al(OH)2 + and Al(OH)2+, on the peanut/Bradyrhizobium symbiosis were examined in solution culture. In flowing solution culture, growth of the host plant was depressed at activities ≥5 μM. Neither shoot dry weight, root dry weight nor root length were inhibited by 3 μM Al, an activity which reduced nodule number by 70%. Low nodule number was compensated for, at this activity, by an increase in weight per nodule. In non-flowing solution culture of similar composition, survival of a streptomycin resistant mutant of Bradyrhizobium spp. NC92 in the bulk solution or in the rhizosphere of peanut roots was unaffected by 20 μM Al. The site of infection by Bradyrhizobium was examined by scanning electron microscopy. Lateral root axils of plants exposed to ≥2 μM Al did not display the rosette of multicellular root hairs which is characteristic in normal plants. The detrimental effects of Al on nodulation appear to be related to structural changes at the site of infection which are observed at Al activities too low to cause any depression in growth of the host plant, including root length, and at activities of Al which do not affect survival of the free-living Bradyrhizobium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...