Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Retroviral vectors ; Oncogene-ras-myc ; Grafting ; Brain tumors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Introduction into fetal rat brain cells of a replication-defective retroviral vector harboring v-Ha-ras and v-gag-myc rapidly causes the induction of highly malignant undifferentiated neuroectodermal tumors following transplantation into the brains of syngeneic hosts [Wiestler, et al. (1992) Cancer Res. 52: 3760–3767]. In the present study, we have investigated the modulating effect of the developmental stage of neural target cells and of the dose of the retroviral vector used in the grafting experiments. Exposure of fetal cells from embryonic day (E)12 or E14 produced a 100% incidence of malignant neuroectodermal tumors which led to the death of recipient animals after a median latency period of 32 days. A 100-fold reduction of the virus dose from 2.062×106 to 2.062×104 focus-forming units/ml resulted in a lower tumor incidence of 25%. Of six neural grafts exposed to v-Ha-ras and v-myc at E16, only one showed evidence of tumorigenesis (low-grade astrocytoma and hemangioma). All other transplants were morphologically normal for observation periods of 26 weeks, indicating a marked loss of transforming activity of ras and myc in more advanced stages of brain development. In retrovirus-exposed donor cells which caused the development of neural tumors in recipient rats, malignant transformation was also evident during culture in vitro, usually after 9–12 days. Oncogene complementation was also studied in the newborn rat brain. After microinjection of the retroviral vector into the brain at postnatal day (P)0, P1 and P3, 5 out of 20 animals (25%) developed a total of seven brain tumors. Histopathologically, three of these neoplasms were malignant neuroectodermal tumors which, in contrast to those induced in fetal brain transplants showed evidence of focal glial and/or neuronal differentiation. In addition, we observed one oligodendroglioma, two hemangiomas and a malignant hemangioendothelioma. These data indicate that neural precursor cells and endothelia of the rat brain represent the major target cells for the complementary action of ras and myc and that the use of target cells from later developmental stages (E16 and postnatal) leads to the induction of both primitive and more differentiated neoplasms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key wordsCDK4 ; Gene amplification ; Protein level ; LOH12q ; Brain tumors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Genetic alterations on the long arm of chromosome 12, including both gene amplification and allelic loss, are associated with malignant progression of human gliomas. The region of the chromosomal arm 12q that is amplified in malignant gliomas contains the CDK4 gene, a cell cycle regulatory gene which promotes cell division. To evaluate the frequency of CDK4 gene amplification, we analyzed a series of 355 brain tumors using a quantitative non-radioactive polymerase chain reaction assay. CDK4 gene amplification occurred in 9 of 81 glioblastomas (11%), but was rare in other neoplasms, including low-grade and anaplastic gliomas, meningiomas, medulloblastomas and metastatic carcinomas (only 6 of 274 cases). There was no correlation between CDK4 gene amplification and allelic loss of chromosome 12. To assess the significance of CDK4 gene amplification, we analyzed protein extracts from 37 glioblastomas by Western blotting with a commercially available polyclonal antibody to cdk4. All tumors with CDK4 gene amplification showed high cdk4 expression levels, whereas no increased cdk4 expression was seen in glioblastomas without CDK4 gene amplification. These data support the functional activity of CDK4 gene amplification in glioblastoma multiforme and point to an important role of CDK4 gene amplification in a subset of glioblastomas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...