Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1617-4623
    Keywords: Key wordsTrachystoma ballii ; Brassica juncea ; Somatic hybrid ; Chloroplast genome recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We document here the presence of a recombinant plastome in a cytoplasmic male sterile (CMS) line of Brassica juncea developed from the somatic hybrid Trachystoma ballii + B. juncea. Restriction endonuclease digestion of the chloroplast (cp) DNA has revealed that the recombinant plastome gives rise to novel fragments in addition to the parent-specific fragments. Analysis of the 16S rRNA region by Southern hybridization shows no variation between B. juncea, T. ballii and the CMS line. The rbcL gene region of the recombinant plastome is identical to that in T. ballii. Analysis with probes for psbA and psbD using single and double DNA digests indicates that the hybridization patterns of the recombinant plastome are identical to those of the parents in digests obtained with some restriction enzymes, while novel bands hybridize to probes in other digests. In the psbA region, a B. juncea-specific PstI site and a T. ballii-specific EcoRI site are found in the recombinant plastome. The psbD region of the recombinant plastome contains a B. juncea-specific HindIII site and T. ballii-specific BamHI and HpaII sites. These results indicate the occurrence of intergenomic recombination between the chloroplasts of T. ballii and B. juncea in the somatic hybrid from which the CMS line was developed. The recombined plastome appears to be a mosaic of fragments specific to both parents and the recombination event has occurred in the single-copy regions. These recombinational events have not caused any imbalance in the recombinant plastome in terms of chloroplast-related functions, which have remained stable over generations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-203X
    Keywords: Brassica juncea ; Diplotaxis catholica ; Somatic hybrids ; Organelle constitution ; Mitochondrial DNA recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Intergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-203X
    Keywords: Key words Random chloroplast segregation ; Mitochondrial genome recombination ; Diplotaxis catholica ; Brassica juncea ; Somatic hybrid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Detailed molecular analysis of the somatic hybrid plants of Diplotaxis catholica+B. juncea indicated random chloroplast segregation. One of the five hybrid plants analyzed derived its chloroplasts from D. catholica and two hybrids had chloroplasts of B. juncea origin. Two hybrid plants maintained mixed population of chloroplasts. The mitochondrial (mt) genomes of the fusion partners had undergone recombinations. Occurrence of fragments specific to both the parents in HindIII digestion followed by atp 9 probing, as in hybrid DJ5, provided evidence for intergenomic mitochondrial recombination between D. catholica and B. juncea. Similar mt genome organization in two hybrids (DJ3 and DJ6) suggested that intergenomic recombination may be preferred at specific sites. Hybrid DJ1 had about 70% similarity to D. catholica in mt genome organization. mt genomes of hybrids DJ2, 3, 5, and 6 differed from B. juncea by 14.3–28%. The significance of these novel mt genome organizations in developing novel male sterility systems is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Brassica juncea ; RAPD ; DNA polymorphism ; Genetic distance ; Heterosis breeding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccard's similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Ogu cytoplasmic male sterility ; Brassica juncea ; Chlorosis correction ; Protoplast fusion ; Mitochondrial recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Male sterility conferred by ogu cytoplasm of Raphanus sativus has been transferred to Brassica juncea cv ‘RLM 198’ from male-sterile B. napus through repeated backcrossing and selection. The male-sterile B. juncea is, however, highly chlorotic and late. It has low female (seed) fertility and small contorted pods. To rectify these defects, protoplasts of the male sterile were fused with normal ‘RLM 198’ (green, self fertile). Four dark green, completely male-sterile plants were obtained and identified as putative cybrids. All the plants were backcrossed three times with ‘RLM 198’. Mitochondrial and chloroplast DNA analysis of backcross progeny confirmed hybridity of the cytoplasm. The restriction pattern of the chloroplast DNA of progeny plants of three cybrids (Og 1, Og 2, Og 3) was similar to that of the green self-fertile ‘RLM 198’ and indicated that the correction of chlorosis resulted from chloroplast substitution. The chloroplast DNA of the lone progeny plant of the fourth cybrid (Og 10) could not be analyzed because the plant was stunted and had only a few leaves. When total cellular DNA was probed with mitochondrial probes coxI and atpA it was found that the cybrids had recombinant mitochondria. The chlorosis-corrected plants were early flowering and had vastly improved seed fertility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words Cytoplasmic male sterility ; Fertility restoration ; Moricandia arvensis ; Brassica juncea ; Protoplast fusion ; Somatic hybrids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A cytoplasmic male-sterility system has been developed in mustard (Brassica juncea) following repeated backcrossings of the somatic hybrid Moricandia arvensis (2n=28, MM)+B. juncea (2n=36, AABB), carrying mitochondria and chloroplasts from M. arvensis, to Brassica juncea. Cytoplasmic male-sterile (CMS) plants are similar to normal B. juncea; however, the leaves exhibit severe chlorosis resulting in delayed flowering. Flowers are normal with slender, non-dehiscent anthers and excellent nectaries. CMS plants show regular meiosis with pollen degeneration occurring during microsporogenesis. Female fertility was normal. Genetic information for fertility restoration was introgressed following the development of a M. arvensis monosomic addition line on CMS B. juncea. The additional chromosome paired allosyndetically with one of the B. juncea bivalents and allowed introgression. The putative restorer plant also exhibited severe chlorosis similar to CMS plants but possessed 89% and 73% pollen and seed fertility, respectively, which subsequently increased to 96% and 87% in the selfed progeny. The progeny of the cross of CMS line with the restorer line MJR-15, segregated into 1 fertile : 1 sterile. The CMS (Moricandia) B. juncea, the restorer (MJR-15), and fertility restored F1 plants possess similar cytoplasmic organellar genomes as revealed by ‘Southern’ analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...