Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • C3, C4 plants (H-isotope composition)  (1)
  • Carbon dioxide fixation (dark)  (1)
  • 1
    ISSN: 1432-2048
    Keywords: C3, C4 plants (H-isotope composition) ; Deuterium ; Hydrogen-isotope composition ; Leaf (H-isotope composition)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The natural abundance hydrogen-isotope composition of leaf water ( $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ ) and leaf organic matter (δ D org ) was measured in leaves of C3 and C4 dicotyledons and monocotyledons. The $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ value of leaf water showed a marked diurnal variation, greatest enrichment being observed about midday. However, this variation was greater in the more slowly transpiring C4 plants than in C3 plants under comparable environmental conditions. A model based on analogies with a constant feed pan of evaporating water was developed and the difference between C3 and C4 plants expressed in terms of either differences in kinetic enrichment or different leaf morphology. Microclimatic and morphological features of the leaves which may be associated with this factor are discussed. There was no daily excursion in the δ D org value in leaves of either C3 or C4 plants. When δ D org values were referenced to the mean $$\delta _{\text{D}}^{{\text{H}}_{\text{2}} {\text{O}}} $$ values during the period of active photosynthesis, the discrimination against deuterium during photosynthetic metabolism (ΔD) was greater in C3 plants (-117 to -121‰) than in C4 plants (-86 to -109‰). These results show that the different water use “strategies” of C3 and C4 plants are responsible for the measured difference in deuterium-isotope composition of leaf water. However, it is unlikely that these physical processes account fully for the differences in hydrogen-isotope composition of the products of C3 and C4 photosynthetic metabolism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Carbon dioxide fixation (dark) ; Crassulacean acid metabolism ; Fumarase ; Malic acid ; Phosphoenolpyruvate carboxylase ; Ribulose-1,5-bisphosphate carboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The labeling patterns in malic acid from dark 13CO2 fixation in seven species of succulent plants with Crassulacean acid metabolism were analysed by gas chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectrometry. Only singly labeled malic-acid molecules were detected and on the average, after 12–14 h dark 13CO2 fixation the ratio of [4-13C] to [1-13C] label was 2:1. However the 4-C carboxyl contained from 72 to 50% of the label depending on species and temperature. The 13C enrichment of malate and fumarate was similar. These data confirm those of W. Cockburn and A. McAuley (1975, Plant Physiol. 55, 87–89) and indicate fumarase randomization is responsible for movement of label to 1-C malic acid following carboxylation of phosphoenolpyruvate. The extent of randomization may depend on time and on the balance of malic-acid fluxes between mitochondria and vacuoles. The ratio of labeling in 4-C to 1-C of malic acid which accumulated following 13CO2 fixation in the dark did not change during deacidification in the light and no doubly-labeled molecules of malic acid were detected. These results indicate that further fumarase randomization does not occur in the light, and futile cycling of decarboxylation products of [13C] malic acid (13CO2 or [1-13C]pyruvate) through phosphoenolpyruvate carboxylase does not occur, presumably because malic acid inhibits this enzyme in the light in vivo. Short-term exposure to 13CO2 in the light after deacidification leads to the synthesis of singly and multiply labeled malic acid in these species, as observed by E.W. Ritz et al. (1986, Planta 167, 284–291). In the shortest times, only singly-labeled [4-13C]malate was detected but this may be a consequence of the higher intensity and better detection statistics of this ion cluster during mass spectrometry. We conclude that both phosphoenolpyruvate carboxylase (EC 4.1.1.32) and ribulose-1,5-biphosphate carboxylase (EC 4.1.1.39) are active at this time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...