Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Ca2+ oscillations  (1)
  • ion solvation  (1)
  • polytriethylene glycol dimethacrylate  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    The journal of membrane biology 125 (1992), S. 107-118 
    ISSN: 1432-1424
    Schlagwort(e): Ca2+ oscillations ; Ca2+ wave ; sarcoplasmic reticulum
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 μm per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Polymer International 41 (1996), S. 301-305 
    ISSN: 0959-8103
    Schlagwort(e): gel electrolyte ; polytriethylene glycol dimethacrylate ; ion solvation ; ion association ; molal conductance ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Maschinenbau , Physik
    Notizen: Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, M̄n = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (αi) and ion pairs (αp) decreases, while that of triple ions (αt) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that αi and αt increase and αp decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55°C, αi increases while αp and αt decrease with increasing temperature; however, when the temperature is higher than 55°C, the reverse is true.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...