Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Enamel ; Amelogenesis ; Crystal growth ; Calcium phosphates ; Biomineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The aim of the present work was to investigate changes in cross-sectional morphologies of enamel crystallites as a function of location in secretory porcine enamel. Enamel tissues were obtained from 5- to 6-month-old slaughtered piglets. For examination by electron microscopy, a portion of the secretory enamel was embedded in resin and ultrathin sections were prepared with a diamond knife. In parallel studies, compositional and structural changes of enamel mineral were assessed by chemical analysis and Fourier transform infrared (FTIR) spectroscopy. For this purpose, two consecutive layers of the outer secretory enamel, each approximately 30 μm thick, were separated from the labial side of permanent incisors. Using high-resolution electron microscopy, early events of enamel crystal growth were characterized as the epitaxial growth of small apatite units on the lateral surfaces of the initially precipitated thin ribbon. These apatite units had regular triangle or trapezoid cross-sections. After fusions of those isolated trapezoids on both lateral sides of the platy template, the resulting enamel crystallites had the well-documented flattened-hexagonal shapes in cross-sections. The initially precipitated thin plate was buried inside the overgrown apatite lamella and then retained as a central dark line. Similar morphological evidence for the epitaxial nucleation and overgrowth of carbonatoapatite on the platy template was obtainedin vitro. Chemical and FTIR analyses of the enamel layer samples showed that the characteristics of the youngest enamel mineral were distinct from those of enamel crystals found in older secretory enamel. The overall results support the concept that initial enamel mineralization comprises two events: the initial precipitation of thin ribbons and the subsequent epitaxial growth of apatite crystals on the two-dimensional octacalcium phosphate-like precursor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 51 (1992), S. 143-150 
    ISSN: 1432-0827
    Keywords: Adsorption ; Magnesium ; Calcium ; Apatite crystals ; Enamel ; Dentin ; Bone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Magnesium (Mg) is a conspicuous constituent of hard tissues but its possible role in biomineralization is poorly understood. It is possible that Mg2+ adsorbed onto bioapatites may contribute to the modulation of crystal growth as such inhibitory activity has been reported for synthetic apatites. The present study was undertaken to determine the adsorption isotherms of Mg ions onto synthetic apatites and biominerals in tooth and bone tissues in the presence of other ions of natural occurrence. Synthetic crystals used as adsorbents were hydroxyapatite and, as a better prototype for the biomineral, Mg-containing carbonatoapatite. Human enamel and dentin materials were obtained from extracted, caries-free, permanent teeth. Porcine dentin materials at two developmental stages were obtained from erupted deciduous and unerupted permanent teeth of a 6-month-old slaughtered piglet. Porcine bone was obtained from the cortical portion of the mandible of the same animal. All biomineral samples were pulverized and then treated by plasma ashing (deproteination) at about 60°C. Each of the powdered samples was equilibrated in solutions containing various initial concentrations of Mg2+, Ca2+, and Na+ (or K+) as nitrate salts. Following equilibration, concentrations (and activities) of magnesium and calcium ions in the experimental solution were determined. The pH values of the equilibrium solutions were in the range of 6.2–6.5. Experimental data of the Mg adsorption onto hydroxyapatite were interpreted on the basis of a Langmuir-type model for binary systems assuming competition of Mg2+ and Ca2+ for the same adsorption sites on the crystal surfaces of the apatites. According to this model, the adsorbed Mg is expressed as a function of the ionic activity ratio (Mg2+)/(Ca2+) in the equilibrium solution. The model contains two parameters, the adsorption selectivity constant Ks and the maximum number of adsorption sites N (μmol/g). The numerical values of Ks were similar for all adsorbents used (synthetic and biological) and indicated the preferential adsorption of Ca2+ probably due to spacial restrictions extending to the very surface of the crystals. The initial level of Mg2+ in the surface pool was different in the various biominerals, probably reflecting the composition of fluid in which the biominerals were formed. Whereas the surface pool of Mg of human enamel was marginal, only 5% of the total Mg, significant fractions of the total Mg in human and porcine dentins (about 20–30%), and porcine bone (about 40%) existed on the crystal surfaces. There were significant differences in the total Mg and the value of the parameter N between young (unerupted) and mature (erupted) dentin minerals. It was ascertained that the occupancy of adsorption sites by Mg ions became greater with maturation of the dentin tissues. The overall results suggest that the Mg-mineral interaction in tooth and bone tissues may be a highly tissue-specific process, presumably reflecting differences in fluid composition (particularly Ca and Mg activities) responsible for biomineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...