Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (1)
  • Capillary dispersion  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 10 (1993), S. 81-94 
    ISSN: 1573-1634
    Keywords: Capillary dispersion ; hyperdispersion ; fractals ; low saturation ; diffusion equation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract Recent displacement experiments show ‘anomalously’ rapid spreading of water during imbibition into a prewet porous medium. We explain this phenomenon, calledhyperdispersion, as viscous flow along fractal pore walls in thin films of thicknessh governed by disjoining forces and capillarity. At high capillary pressure, total wetting phase saturation is the sum of thin-film and pendular stucture inventories:S w =S tf +S ps . In many cases, disjoining pressure ∏ is inversely proportional to a powerm of film thicknessh, i.e. ∏ ∞h −m , so thatS tf ∞P c −1/m. The contribution of fractal pendular structures to wetting phase saturation often obeys a power lawS ps ∞P c (3−D), whereD is the Hausdorff or fractal dimension of pore wall roughness. Hence, if wetting phase inventory is primarily pendular structures, and if thin films control the hydraulic resistance of wetting phase, the capillary dispersion coefficient obeysD c ∞S w v , where v=[3−m(4−D) ]/m(3−D). The spreading ishyperdispersive, i.e.D c (S w ) rises as wetting phase saturation approaches zero, ifm〉3/(4−D),hypodispersive, i.e.D c (S 2) falls as wetting phase saturation tends to zero, ifm〈3/(4−D), anddiffusion-like ifm=3/(4−D). Asymptotic analysis of the ‘capillary diffusion’ equation is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...