Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1750
    Keywords: Capillary filtration coefficient ; Pulmonary edema ; Pulmonary venoconstriction ; Lung weight gain ; Isogravimetric capillary pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study was designed to determine the effects of thromboxane A2 (TxA2) on the distribution of vascular resistance, lung weight, and microvascular permeability in isolated dog lungs perfused at a constant pressure with autologous blood. The stable TxA2 analogue (STA2; 30 μg, n = 5) caused an increase in pulmonary capillary pressure (Pc) assessed as double-occlusion pressure to 14.0 ± 0.4 mmHg from the baseline of 7.9 ± 0.3 mmHg with progressive lung weight gain. Pulmonary vascular resistance increased threefold exclusively due to pulmonary venoconstriction. Pulmonary venoconstriction was confirmed in lungs perfused in a reverse direction from the pulmonary vein to the artery (n = 5), as evidenced by marked precapillary vasoconstriction and a sustained lung weight loss. Furthermore, in lungs perfused at a constant blood flow (n = 5), STA2 also caused selective pulmonary venoconstriction. Vascular permeability measured by the capillary filtration coefficient and the isogravimetric Pc at 30 and 60 min after STA2 infusion did not change significantly from baseline in any lungs studied. Moreover, elevation of Pc by raising the venous reservoir of the intact lobes (n = 5) to the same level as the STA2 lungs caused a greater or similar weight gain compared with the STA2 lungs. Thus, we conclude that TxA2 constricts selectively the pulmonary vein resulting in an increase in Pc and lung weight gain without significant changes in vascular permeability in isolated blood-perfused dog lungs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...