Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Intracellular pH ; SNARF-1 ; Carotid body
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We report the use of a new pH-sensitive dualemission fluoroprobe, carboxy-seminaphthorhodafluor-1 (carboxy-SNARF-1) for ratiometric recording of intracellular pH (pHi) in small isolated cells. The method is illustrated with pHi measurement in single type-1 cells (cell diameter ∼10 μm) isolated from the carotid body of the neonatal rat. Carboxy-SNARF-1 is loaded using bath application of the acetoxymethyl ester. When excited at 540 nm, the fluoroprobe gives strong, inversely related emission signals at 590 nm and 640 nm. Stable ratiometric recordings of pHi can be achieved from a single cell (pHi 8.5-6.5) for up to 50 min. Photobleaching of the probe is minimised by illuminating at relatively low light intensity (50 W xenon lamp with 0.2% transmission neutral density filter). The probe can be calibrated in situ using the nigericin technique and this is in good quantitative agreement with the independent null-point technique (extracellular weak acid/weak base application) of Eisner et al. (1989). This fluoroprobe offers certain advantages over the other commonly used probe for pHi 2′,7′-bis-(2-carboxyethyl)-5(and -6)-carboxyfluorescein (BCECF): (i) because of its two strong pH-sensitive peak emissions, SNARF displays a good signal-to-noise ratio for ratiometric recording at low light intensities; (ii) unlike BCECF, the dual emisson of SNARF requires no sequential mechanical switching of excitation filters, thus simplifying the epifluorescence set-up; (iii) because carboxy-SNARF-1 emission signals are at the yellow/red end of the visible spectrum, fluorescent drugs like amiloride, ethyl-isopropyl-amibride (EIPA), 4,4′-diisothiocyanostilbene 2,2′-disulphonic acid (DIDS) and cinnamate analogues do not interfere with the pHi recording, even when used at high concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 434 (1997), S. 429-437 
    ISSN: 1432-2013
    Keywords: Key words pHi ; SNARF ; Carotid body ; Type-1 cell ; Potassium-hydrogen exchange ; K+-H+ exchanger (KHE) ; Nigericin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Intracellular pH (pHi) was measured in enzymically isolated, neonatal rat carotid body type-1 cells, using the fluorophore carboxy-SNARF-1 (AM-loaded), and using the nigericin technique for in situ fluorescence calibration (nigericin is a membrane-soluble K+-H+ exchanger). In CO2/HCO3 –-free media, inhibiting Na+-H+ exchange produced a prompt fall of pHi (background acid-loading), the rate of which was reduced by raising the extracellular K+ concentration, [K+]o. pHi recovery from an intracellular acid or alkali load was also sensitive to changes of [K+]o. These results are similar to those of Wilding et al. (J Gen Physiol 100:593–608, 1992), who proposed the existence of an acid-loading, K+-H+ exchanger (KHE) in the type-1 cell. However, when nigericin was not used for post-experimental calibration, and the superfusion system was flushed exhaustively with strong detergent, alcohol and distilled water, then background acid-loading was attenuated, and the K+ o sensitivity of pHi insignificant. Background loading was increased again, and K+ o sensitivity restored, when cells were monitored in a superfusion system which had previously been exposed to a single nigericin-calibration protocol (followed by a short system wash with strong detergent and distilled water). We conclude that the previously reported expression of KHE in carotid body type-1 cells is an artefact caused by nigericin contamination. We have therefore quantified the pHi dependence of background loading in uncontaminated type-1 cells. We consider the possible implications of our work for reports of KHE in other cell types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Carotid body ; Chemoreceptor ; Intracellular calcium ; Intracellular pH ; Extracellular pH ; Acidosis ; Hypercapnia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have investigated the effects of acidic stimuli upon [Ca2+]i in isolated carotid body type I cells from the neonatal rat using indo-1 (AM-loaded). Under normocapnic, non-hypoxic conditions (23 mM HCO3 −, 5% CO2 in air, pHo=7.4), the mean [Ca2+]i for single cells was 102±5.0 nM (SEM, n=55) with 58% of cells showing sporadic [Ca2+]i fluctuations. A hypercapnic acidosis (increase in CO2 to 10%–20% at constant HCO3 −, pHo 7.15–6.85), an isohydric hypercapnia (increase in CO2 to 10% at constant pHo=7.4) and an isocapnic acidosis (pHo=7.0, constant CO2) all increased [Ca2+]i in single cells and cell clusters. The averaged [Ca2+]i response to both hypercapnic acidosis and isohydric hypercapnia displayed a rapid rise followed by a secondary decline. The averaged [Ca2+]i response to isocapnic acidosis displayed a slower rise and little secondary decline. The rise of [Ca2+]i in response to all the above stimuli can be attributed to no single factor other than to a fall of pHi. The hypercapnia-induced rise of [Ca2+]i was almost completely abolished in Ca2+-free solution, suggesting a role for Ca2+ influx in triggering and/or sustaining the [Ca2+]i response. These results are consistent with a role for type I cell [Ca2+]i in mediating pH/PCO2 chemoreception.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...