Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1432-2048
    Schlagwort(e): Cell cultures ; DNA replication ; Glycine ; Protoplasts
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Cell-suspension cultures of soybean (Glycine max (L.) Merr., line SB-1) have been used to study DNA replication. Cells or protoplasts incorporate either radioactive thymidine or 5-bromodeoxyuridine (BUdR) into DNA. The DNA has been extracted as large molecules which can be visualized by autoradiography. Nuclei were isolated and lysed on slides thus avoiding degradation of DNA by a cytoplasmic endonuclease. The autoradiograms demonstrated that DNA synthesis occurs at several sites tandemly arranged on single DNA molecules separated by center to center distances ranging from 10 to 30 μm. Velocity sedimentations through alkaline gradients confirm the lengths of the replicated regions seen in autoradiograms. By using velocity sedimentation it also has been possible to demonstrate that replication proceeds by the synthesis of very small (4–6S) DNA intermediates which join to form the larger, replicon-size pieces seen in autoradiograms. Both small (4–6S) and large (20–30S) intermediates are observed in synchronized and exponential cultures. However, after synchronization with fluorodeoxyuridine (FUdR) the rate of DNA synthesis is reduced. Since the size of intermediates is not reduced by FUdR treatment, it is concluded that the slower rate of replication results from a reduction in the number of tandem replication units but not in the rate at which they are elongated. After FUdR treatment, the density analogue of thymidine, BUdR, can be substituted for almost all of the thymidine residue in DNA, resulting in a buoyant density increase (in CsCl) from 1.694 to 1.747 g/cm3. Using this density analogue it is possible to estimate the amount of template DNA attached to new replication sites. When this is done, it can be shown that synchronized cells initiate replication at about 5,000 different sites at the beginning of S. (Each such site will replicate to an average length of 20 μm.) Use of BUdR also substantiates that at early stages of replication, very small replicated regions (〈8S) exist which are separated by unreplicated segments of DNA which replicate at a later time. Most of these conclusions agree with the pattern of DNA replication established for animal cells. However, a major difference appears to be that after prolonged inhibition of soybean cell replication with FUdR, very small, as well as replicon-size intermediates accumulate when replication is restored. This indicates that regulation of replication in these cells may be different from animal cells.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Electron Microscopy Technique 7 (1987), S. 319-322 
    ISSN: 0741-0581
    Schlagwort(e): Cross-sectional transmission electron microscopy (XTEM) ; LSI circuit ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Allgemeine Naturwissenschaft
    Notizen: Cross-sectional transmission electron microscopy (XTEM) has been used to diagnose silicon LSI circuits and Josephson junction devices. For LSI circuits, some typical failure problems have been presented. For Nb-Si-Nb Josephson junction, microholes in the thin silicon layer have observed, and they are responsible for the short circuiting of these devices.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...