Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cell & Developmental Biology  (1)
  • HVEM  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Acta neuropathologica 64 (1984), S. 192-202 
    ISSN: 1432-0533
    Schlagwort(e): Astrocytoma ; Blood-brain barrier ; HVEM ; Transendothelial channels ; Protein tracer ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Brain tumors, benign and malignant, are characteristically more permeable to various types of tracer molecules than the neuropil in which they are embedded. Impermeability of brain neuropil capillaries is imparted by the blood-brain barrier, the anatomic basis of which is the network of interendothelial zonulae occludentes that seal capillary endothelial cells. To explore both the vascular elements of brain neoplasms and the route of tracer extravasation from them, as well as the possible effects of brain tumors on the permeability of peritumoral neuropil capillaries, brain tumors were induced in newborn Wistar rats by intracerebral (i.c.) injection of C-6 astrocytoma cells. The protein tracer horseradish peroxidase (HRP) was injected systemically into both normal and tumorbearing rats to mark the pathway along which it flowed into the tumor parenchyma tissue spaces, and to signal any concomitant tracer loss from the tumor extracellular compartment or peritumoral brain capillaries, into the neuropil extracellular milieu. Electron-microscopic examination on thin plastic sections of tumor and peritumoral neuropil revealed massive extravasation of tracer into the tumor tissue spaces, but none was seen outside of the capillaries in the surrounding brain neuropil. Zonulae occludentes of both tumor capillary endothelium and brain capillary endothelium were devoid of tracer and judged tight (sealed). Tracer was seen in pinocytotic vesicles in the highly attenuated endothelium of tumor capillaries and also in cytoplasmic vesicles within the tumor cells. The peritumoral and contralateral neuropil capillary endothelium exhibited reaction product-filled pinocytotic vesicles and vesiculo-tubular conduits. Often, one end of a HRP-filled vesiculo-tubular channel appeared continuous with either the luminal or abluminal plasmalemma. High-voltage electron microscopy of these conduits often showed them to be continuous with both luminal and abluminal surfaces of the endothelium, thus forming a continuum across the capillary wall. In addition, these transendothelial channels, clearly constituted as chains of fused vesicles, were often seen in close proximity to, or fused with, dense bodies in the endothelial cytoplasm. In spite of the presence of HRP-filled structures in the peritumoral neuropil capillary endothelium of tumor-bearing rats, no evidence of tracer extravasation from these vessels was apparent. These results suggest that although peritumoral and contralateral neuropil capillaries possess the machinery for extravasation of tracer, likely as a response to the presence of the neoplasm, tracer is not lost but, instead, is degraded by endothelial enzymes. The extensive flooding of the tumor extracellular compartment with tracer may be achieved by transport of HRP across the very thin walls of tumor capillaries by single cytoplasmic vesicles which structurally and functionally play the role of transendothelial channels. Based on the results of this study, it is unlikely that molecules delivered systemically to treat brain neoplasms, will leak into the peritumor or contralateral neuropil, either from their own capillaries, or from the extracellular compartment of the tumor parenchyma.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 188 (1986), S. 347-361 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: A morphological comparison was made of the green livers of male and female lampreys (Petromyzon marinus L.) collected during the upstream (prespawning) migration. Light and electron microscope histochemistry for iron, and both thin sections and freeze-fracture replicas in the electron microscope, revealed some sexual dimorphism in these livers. Ferric iron is much more abundant in the liver of females and is present in the cytoplasmic matrix, in dense bodies, and in vacuoles of hepatocytes. The numerous vacuoles of females may be the deposition site of biliverdin and other bile components that would account for the darker green coloration of the liver compared to males. Hepatocytes in females are also characterized by prominent rough endoplasmic reticulum and Golgi apparatus that reflect the involvement of the cells in vitellogenesis. The presence of numerous lipid droplets in the hepatocytes of males indicates that the liver is an important storage site for fat. The lipid droplets are associated with electron-dense deposits of unknown nature. Large gap junctions typify the parenchymal cells of both male and female livers. Perisinusoidal and sinusoidal cells are similar to those in the nonparenchymal region in other vertebrate livers, namely, endothelial and Kupffer cells, lipocytes (Ito), and some granulated cells. The relationship of lipocytes to fibrous tissue and fibrogenesis is discussed.
    Zusätzliches Material: 17 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...