Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 177 (1998), S. 465-473 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Human dermal fibroblasts suspended in a collagen matrix exhibit a 4-day delay in cell division, while the same cells in monolayer divided by day 1. The initial rates of 3H-thymidine incorporation by cells in monolayer or suspended in collagen were not significantly different. When suspended in collagen, there was a threefold increase in the proportion of cells in a tetraploidal (4N) DNA state compared to the same cells in monolayer. Flow cytometry analysis and 3H-thymidine incorporation studies identified the delay of cell division as a consequence of a block in the G2/M of the cell cycle and not an inhibition of DNA synthesis. The inclusion of 150 μ/ml of hyaluronic acid (HA) in the manufacture of fibroblast populated collagen lattices (FPCL) caused a stimulation of cell division, as determined by cell counting; increased the expression of tubulin, as determined by Western blot analysis; and reduced the proportion of cells in a 4N state, as determined by flow cytometry. HA added to the same cells growing in monolayer produced a minimal increase in the rate of cell division or DNA synthesis. HA supplementation of FPCLs stimulated cell division as well as tubulin concentrations, but it did not enhance lattice contraction. The introduction of tubulin isolated from pig brain or purchased tubulin into fibroblasts by electroporation prior to their transfer into collagen lattices promoted cell division in the first 24 hours and enhanced FPCL contraction. It is proposed that tubulin protein, the building blocks of microtubules, is limited in human fibroblasts residing within a collagen matrix. When human fibroblasts are suspended in collagen, one effect of added HA may be to stimulate the synthesis of tubulin which assists cells through the cell cycle. J. Cell. Physiol. 177:465-473, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 146 (1991), S. 1-7 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Mixing feed fibroblasts with soluble collagen and serum-supplemented culture medium at 37°C results in the entrapment of cells within the polymerizing collagen matrix. This cellular-collagen complex is referred to as a fibroblast-populated collagen lattice (FPCL). In time, this FPCL undergoes a reduction in size called lattice contraction. The proposed mechanism for lattice contraction is cellular force produced by cytoplasmic microfilaments which organize collagen fibrils compacting the matrix. When the regulatory subunits of myosin, myosin light chains, are phosphorylated by myosin light chain kinase (MLCK), myosin ATPase activity is increased and actin-myosin dynamic filament sliding occurs. Elevated levels of myosin ATPase are required for maximal lattice contraction. Cholera toxin inhibits lattice contraction by increasing intracellular levels of cAMP. It is proposed that increased cytoplasmic concentrations of cAMP promote phosphorylation of MLCK, the enzyme important for maximizing myosin ATPase activity. Phosphorylating MLCK in vitro inhibits activity by decreasing its sensitivity to calcium-calmodulin complex. A decrease in MLCK activity would result in lower levels of myosin ATPase activity. MLCK, purified from turkey gizzard, was subjected to limited proteolytic digestion to produce calmodulin-independent-MLCK. The partially digested kinase does not require calcium-calmodulin for activation. Independent-MLCK is not subject to inhibition by phosphorylation. The electroporetic inoculation of independent-MLCK into fibroblasts before FPCL manufacture produced enhanced lattice contraction. Lattice contraction, in the presence of cholera toxin, was restored to normal levels by the prior electroporetic introduction of independent-MLCK. These findings support the hypothesis that increases in cAMP hinder lattice contraction by a mechanism involving inhibition of MLCK and myosin ATPase.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 116 (1983), S. 159-166 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Differences between the behavior of cultured rat skin fibroblasts and that of a line of transformed rat sarcoma cells incorporated into a polymerized collagen lattice were examined. Fibroblast-populated collagen lattices (FPCL) were manufactured. Within 24 to 48 hr after manufacture, both cell lines reduced lattice size by a process known as lattice contraction. Contraction occurred more rapidly in both cell lines when the media were supplemented with 25% serum rather than the usual concentration of 10% serum. Similar growth patterns were observed with transformed cells within collagen lattices and on plastic surfaces. Normal rat fibroblasts were found to contract lattices faster than transformed cells. At the end of a 2-week period, the final contracted size of the transformed cell lattice was the same as that of normal cell lattices. The cellular density of transformed cells within the FPCL was eight times greater than that of FPCL made with normal rat cells. Normal rat fibroblasts elongated and flattened more, and organized the collagen matrix to a greater degree, than did transformed cells. In this instance, therefore, lattice contraction was shown to be linked more to the process of fibroblast elongation and collagen fiber organization than to cell number or density.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 116 (1983), S. 345-351 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Fibroblast-populated collagen lattices (FPCL), prepared in petri dishes with serum-containing culture medium and incubated at 37°C, undergo progressive and symmetric contraction (reduction in size) over a period of days. The in vitro contraction process requires viable cells with intact cytoskeletal elements, is associated with cell elongation, and is believed to represent a fibroblast function which also occurs in vivo during wound healing and tissue fibrosis. We report that soluble mediators elaborated by chronic inflammatory cells cultured in vitro, when added to FPCL, inhibit lattice contraction. Granulomas, isolated from the liver of Schistosoma mansoni-infected mice, secrete a factor(s) with an estimated molecular weight between 13,700 and 43,000 daltons (gel filtration: Sephadex G-200) and pl = 6 (preparative isoelectrofocusing in granular gel) which inhibits lattice contraction but is not toxic to fibroblasts. Supernatants (cell-free conditioned culture medium) of cultured macrophages isolated from these granulomas also contain this activity. The contraction inhibitory activity present in granuloma culture supernatants is abrogated by the addition of indomethacin to the lattices, while the addition of prostaglandin E2 (PGE2) alone to lattices inhibits contraction. Furthermore, culture supernatants interfere with fibroblast elongation in lattices. We propose that the ability of fibroblasts to contract collagen lattices in vitro and a fibrotic mass in vivo may be regulated by soluble products of chronic inflammatory cells, including macrophages. This process may be mediated by fibroblast-derived prostaglandins which alter cytoskeletal functions and has implications for understanding regulation of tissue fibrogenesis in a variety of diseases.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...